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ABSTRACT

ENERGY DEPENDENCE OF FLUCTUATION AND CORRELATION
OBSERVABLES OF TRANSVERSE MOMENTUM IN HEAVY-ION

COLLISIONS

By

John F. Novak

In collisions of heavy ions of sufficient energy, cold nuclear matter can be forced into a strongly

interacting state of quark-gloun plasma (QGP). To study the properties of QGP and the

phase transition to hadronic matter, Au+Au collisions were performed at the Relativistic

Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) and studied using the

Solendoidal Tracker at RHIC (STAR) detector. These Au+Au collision were taken during

2010 and 2011 as part of the RHIC Beam Energy Scan (BES) at energies
√

sNN = 7.7, 11.5,

19.6, 27, 39, 62.4, and 200 GeV. The primary goal of the BES was to search for the critical

point of the phase transition between the QGP phase and the hadronic matter phase of

nuclear matter.

In this dissertation two analyses on these data are presented which focus on fluctuations of the

average transverse momentum (〈pt〉) of the particles produced in heavy-ion collisions. 〈pt〉

is related to the temperature of the systems produced in the collisions [35], and fluctuations

of 〈pt〉 should be sensitive to fluctuations of the temperature [40]. The moments of the 〈pt〉

distributions has also been proposed to be sensitive to the correlation length of the QGP

medium [41, 42], which will diverge at the critical point.

Fluctuations of 〈pt〉 will depend upon both dynamic fluctuations of the produced systems,

and statistical fluctuations due to limited statistics. The first analysis presented in this dis-



sertation is of the two particle relative momentum correlator
〈
Δpt,i, Δpt,j

〉
which is a direct

measure of the dynamic fluctuations of the variance of the 〈pt〉 distribution, σ2
〈pt〉,dynamic.

The second analysis presented in this dissertation is of the higher moments of the 〈pt〉 dis-

tribution. The dynamic higher moments are inferred by comparison of the measured data

with mixed events and statically sampled events which reproduce the statistical fluctuations

while having no dynamic fluctuations.

No consistent non-monotonic behavior, which would be a conclusive indication of the QGP

critical point, is observed. Some anomalous behavior of the higher moments is noted which

will require further analysis. Dynamic fluctuations of the 〈pt〉 distribution, as measured by

the two particle correlator
〈
Δpt,i, Δpt,j

〉
and the higher moments of the 〈pt〉 distribution,

are observed to increase with energy. There is a strong energy dependence below
√

sNN =

19.6 GeV, and the dynamic fluctuations of 〈pt〉 are consistent with zero at 7.7 GeV.
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Chapter 1

Introduction

In the first moments of time, only a few microseconds after the big bang, the universe existed

in a state far different from that which is seen almost anywhere in the universe today. All

matter was exceedingly dense and hot (a few trillion degrees), so much so that not only

atoms but also their nuclei and the nucleons which form them could not exist. It was too

dense and too hot for baryons and mesons to form from quarks and gluons and all partonic

matter existed as a plasma of free quarks and gluons.

Within a few microseconds the expansion and cooling of the universe caused the plasma

to hadronize into color neutral particles. Today the only place where those primordial

conditions are accessibly reproduced is at the center of heavy-ion collisions like those studied

in this dissertation.

The study of heavy-ion physics is clearly applicable to the cosmological investigation of the

universe’s earliest moments, but it is also a powerful tool in the study of nuclear matter. The

available phase space for nuclear matter is enormous when compared to the region of it which

can be sampled experimentally. Large regions of the nuclear phase diagram are uncertain

and theoretical predictions there are poorly constrained. Heavy-ion collisions sample specific

regions of the nuclear phase space and can constrain theoretical predictions and the phase

diagram.
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1.1 The Standard Model and Quantum ChromoDy-

namics

The theory which currently offers the best description of the fundamental particles and

the interactions of those particles is the Standard Model. The Standard Model includes

6 leptons (the electron, muon, tau, and their respective neutrinos), 6 quarks (up, down,

charm, strange, top, and bottom), four gauge bosons as force carriers (the photon, gluon, Z

boson, and the two W bosons), and the Higgs boson (also known as the Englert-Brout-Higgs-

Guralnik-Hagen-Kibble boson). Forces between the fundamental particles are manifested as

exchanges of gauge bosons. The interactions between the gauge bosons and the quarks and

leptons are described by the theories of Quantum ElectroDynamics (QED), Electro-Weak

theory (EWT), and Quantum ChromoDynamics (QCD).

The electromagnetic force carrier is the photon, and the interaction between photons and

charged particles is described by QED. The weak force carriers are the Z bosons and the

two W bosons, and is described by EWT. The fact that the Z and W bosons are massive

particles limits the effective range of the weak force. The interactions of gluons with quarks is

described as an exchange of ‘color charge’ (in analogy with electric charge) and it governed

by QCD. While QCD is analogous to QED in some ways, its behavior is fundamentally

different. Two of the most defining behaviors of QCD are ‘color confinement’ and ‘asymptotic

freedom’.
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1.1.1 Color Confinement

Gluons, the QCD force carrier, mediate the forces between objects with color charge just

as photons mediate the force between objects with electric charge. However, gluons have

color charge themselves, which gives rise to the phenomenon know as “color confinement”.

The photon, having no charge, does not interact with itself, or other photons. This means

that as two charged particles are separated, the force between them decreases with distance.

This is because photons radiate in all directions, so the intensity falls off with distance r

like, 1/ (surface area) ∝ 1/r2. In the analogous QCD example, as two quarks are separated

in space, the gluons between them interact with themselves and each other and produce

a ‘color flux tube’. The effect of this tube is that the force between the quarks does not

decrease with distance, but remains constant. In principle, it would require infinite force to

separate two quarks. In practice however, once there is enough energy in the flux tube, the

tube will ‘break’ by producing a quark-antiquark pair (Figure 1.1).

The spatial potential between two interacting quarks is given by,

Vs (r) = −4

3

αs
r

+ kr, (1.1)

were r is the distance between the quarks, αs is the strong coupling constant, and k describes

the long range interactions. An equivalent statement is that the force between the same two

quarks is given by1

Fs (r) =
4

3

αs
r2 + k, (1.2)

1F (r) = −dV (r)
dr .
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Figure 1.1: The force between two quarks as a function of the distance between the quarks. A
color flux tube forms between the quarks, which causes force to stay constant with distance.
Adapted from Ref. [1]. For interpretation of the references to color in this and all other
Figures, the reader is referred to the electronic version of this dissertation.

Which is to say that for large r the force is constant.

1.1.2 Asymptotic Freedom

Similar to QED, in QCD the renormalization coupling constant, αs (μ), depends on the

renormalization scale. In QED, due to charge screening from vacuum-fluctuation virtual-

particles, the coupling, α, decreases with distance. This is known as the running coupling

constant in QED. In QCD something similar happens, but gluon self interaction changes

the behavior of αs (μ). The coupling constant αs (μ) can be written as αs (μ) =
g2
s (μ)
4π ≈

4π

β0 ln
(
μ2/Λ2

) , where Λ is the QCD scale, μ is the momentum transfer scale, and β0 is the first

order beta-function which encodes the energy independent part of the coupling parameter.

When β0 > 0 the coupling decreases logarithmically with energy, which is called asymptotic

freedom.

To say this is simpler terms: the quarks become asymptotically less bound as energy in-
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creases, and quarks can only be completely ‘free’ in the limit of infinite energy. Figure

1.2 shows the QCD renormalization coupling constant, αs (μ), as a function of energy (or

momentum) transfer showing the QCD prediction versus experimental measurements.

The practical consequence of asymptotic freedom is that the only way to study free quarks

is in systems at very high energies like those produced in heavy-ion collisions.

1.2 Quark Gluon Plasma

Due to the confinement of quarks, as discussed in Section 1.1, at normal temperatures and

densities quarks are bound inside of hadrons.

1.2.1 The QCD Phase Diagram

A cartoon representation of the phase diagram for quark matter can be seen in Figure 1.3.

This representation of the phase diagram shows estimates of the phases of quark matter as

a function of temperature and baryon chemical potential (μB), which can be thought of as

a proxy for density. At high enough temperature the phase becomes independent of μB and

the only possible phase is QGP. At temperatures below ∼170 MeV (the critical temperature)

the phase depends upon both the temperature and μB.

At μB = 0, the density will also be zero, so the lower left point of Figure 1.3 corresponds to

vacuum. For low, but non-zero μB, below the phase transition to QGP, quarks and gluons

will coalesce into hadrons and take the phase of a hadron gas. Increasing μB is equivalent

to increasing density, and a point can be noted at temperature ∼ 0 MeV and μB = nucleon
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Figure 1.2: The QCD renormalization coupling constant, αs (μ), as a function of energy
(or momentum) transfer. The QCD calculation is shown with experimental measurements.
Taken from Ref. [2].
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Figure 1.3: The QCD phase diagram. Adapted from Ref. [3].

7



mass (∼ 939 MeV) which corresponds to to the transition to nuclear matter.

For μB greater than ∼ 900 MeV, the density is greater than that of nuclear matter. Exotic

phases are theorized to exist at very large μB. Such phases may possibly exist at the cores

of neutron stars and could have unique properties such as color super conductivity.

In heavy-ion collisions, if there is sufficient center of mass energy, the system will be forced

non-adiabaticly to a point in the QGP phase. The temperature of this initial state increases

with collision energy, while μB will decrease with collision energy.

In heavy-ion collisions after the initial QGP state is formed the system will cool and expand.

The expansion is isentropic and follows a trajectory so that
dμB
dS = const, where S is the

entropy. Both the temperature and μB decreases until the system undergoes a phase tran-

sition and hadronizes as it passes into the hadron gas phase. If the system passes through

a first order phase transition, it will move along the phase transition line toward lower μB

due to latent heat. After passing through the phase transition the system will continue to

cool isentropically.

1.2.2 The QCD Critical Point

For zero baryon chemical potential, μB = 0, lattice calculations indicate the there should

be a smooth crossover between the QGP phase and the hadron gas phase with a critical

temperature in the region of 160 to 170 MeV [4, 5, 6, 7, 8, 9]. The systems produced

in heavy-ion collisions at high incident energies are very near to vanishing μB [10]. For

temperature T = 0, lattice calculations, nuclear theory, and analogies with other physical

systems suggest that there should be a first order phase transition most likely to a color
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superconducting phase [11, 12, 8, 9]. If both results are true, then in the region of finite

temperature and finite μB there must exist a critical point. Lattice calculations in the region

of both finite temperature and finite μB are computationally expensive, but they also indicate

that there should be a critical point [7, 8, 9]. The only way to locate the critical point, if it

exists, is to explore the phase diagram experimentally with heavy-ion collisions.

1.2.2.1 Critical Opalescence

Systems which pass near a critical point between a smooth crossover and a first or second

order phase transition will undergo a phenomena known as critical opalescence. Critical

opalescence was first observed in 1869 in liquid CO2. As the temperature was increased

through 304.25 K and was held at 72.9 atm the medium became cloudy [13, 14]. This

cloudiness indicated density fluctuations occurring in subdomains which were large compared

to the wavelength of light. These fluctuations scatter the light passing through the medium,

resulting in the cloudy appearance. This phenomena was explained by Albert Einstein forty

years later [15], and is related to the divergence of the correlation length, ξ. The divergence

of the correlation length is common to all critical points between smooth crossovers and first

or second order phase transitions.

In an idealized case the correlation length would diverge to infinity; in practice however,

correlations are restricted to propagating at finite speeds and the systems are finite in volume

and time. This is important in heavy-ion collisions, because the system lifetime is very short

(a few fm/c), the volume is finite, and the volume is rapidly expanding. This means that

if observables are constructed which are supposed to be sensitive to the correlation length,

the magnitude of their deviation at the critical point will be strongly related to the size,
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lifetime, and inherent properties of the system being studied. The observables analyzed for

this dissertation and their relationship to the correlation length are addressed in depth in

Chapter 4.

1.3 Heavy-Ion Collisions

1.3.1 System Evolution

The first few fm/c seconds of a heavy-ion collision are dominated by hard processes such

as fragmentation, quark pair production, and jet production. Through the process of hard

interactions, the system evolves to local thermal equilibrium, and a strongly interacting

QGP phase is formed. The QGP phase has very high temperature and density, so it rapidly

expands and cools. Once the system reaches the phase transition it undergoes chemical freeze

out, at which point the QGP hadronizes into a hadron gas and the chemical composition is

approximately fixed. For most of the energies studied the transition from QGP to hadron

gas is a smooth crossover so it should be noted that different parts of the medium undergo

the phase transitions at different points in time. This means that there is a period in the

evolution of the system where there is a core of QGP matter surrounded by a hadron gas.

After chemical freeze out, the system continues to interact kinetically and the produced

hadrons will scatter off each other. Some of the produced hadrons will be unstable and will

decay during this phase of the system. The scattering continues until the system reaches

kinetic freeze out, at which point the volume is diffuse enough that the particles no longer

interact at all. After kinetic freeze out the thermal and kinetic information of the system is

fixed.
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Figure 1.4: A representation of the system evolution in heavy-ion collision showing the phases
and transitions. The ordinate corresponds to time, and the abscissa corresponds to distance
along the beam axis. The origin is the center of the collision at the moment of impact. Taken
from Ref. [16].
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After the final freeze out, the produced particles stream out into the detectors where their

masses, charges, energies, and other properties are measured. The only information available

to a physicist is the data read out from each detector, so any information about the earlier

states of the system has to be inferred from the particles.

1.3.2 Collision Centrality

An important parameter in heavy-ion collisions is the event centrality. The collision centrality

is analogous to the impact parameter of the colliding nuclei. If the two nuclei collide exactly

head-on, with an impact parameter b = 0 fm, we would say the collision was central. As

the impact parameter is made larger, we say the collisions become more peripheral, until we

reach the most peripheral possible collisions at b ≈ 14 fm in the case of gold (14 fm = 2× 7

fm, where 7 fm is approximately the radius of a gold nucleus).

Experimentally the collision centrality for an event is determined using the multiplicity of

the event assuming that more central collisions have higher multiplicity. Multiplicity can be

defined experimentally in many ways, but they are all attempts to quantify the number of

particles emitted from an event. In practice only charged particles are observed, and the

geometrical acceptance is limited by the detector. Some analyses (those which are studying

properties of the multiplicity distributions) need careful multiplicity definitions in order to

avoid biasing their results. In all cases the objective is to use a measure which is a proxy for

the absolute number of particles produced in a collision. To relate experimentally measured

multiplicities to inferred centralities, Glauber Monte-Carlo simulations are used and fit to

the data. This is addressed in more depth in Section 3.6.
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Chapter 2

Experimental Setup

2.1 The Relativistic Heavy-Ion Collider (RHIC)

All data presented in this dissertation were taken at the Relativistic Heavy-Ion Collider

(RHIC) which is an experimental facility located at Brookhaven National Laboratory (BNL)

in Upton, NY. RHIC consists of a collection of accelerators and storage rings capable of

colliding both high intensity polarized protons as well as heavy-ions. Figure 2.1 shows an

aerial view of RHIC. RHIC’s accelerating chain has four steps: the Tandem Van de Graaff

linear accelerator, the Booster synchrotron, the Alternating Gradient Synchrotron (AGS),

and the main rings. The main rings consist of two super-cooled concentric storage rings,

through which two beams can be circulated in opposite directions. The main rings run

through a tunnel 3.8 km in circumference, and there are six interaction areas where the

beams can be collided. Only four of RHIC’s six interaction regions are used for experiments.

The experiments at RHIC are BRHAMS (Broad RAnge Hadron Magnetic Spectrometers) at

2 o’clock, PHENIX (Pioneering High Energy Nuclear Interactions experiment) at 8 o’clock,

PHOBOS1 at 10 o’clock, and STAR (Solenoidal Tracker at RHIC) at 6 o’clock. Of these

1PHOBOS is not an acronym. According to an interview with Wit Busza, spokesman
for PHOBOS, “we first proposed a slightly more expensive experiment called the Modular
Array for RHIC Spectra, or MARS. That was considered too expensive, so we came up with
a reduced version and one of my colleagues at MIT said that, since Mars was too expensive,
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Figure 2.1: Aerial view of RHIC. From Ref. [18].

four, only STAR and PHENIX are still collecting data. Both BRHAMS and PHOBOS have

completed their experimental programs and were decommissioned once their physics goals

had been reached.

The production of heavy-ions begins at the ion source which feeds the Tandem Van de Graaff

accelerator. All data used in this thesis were taken for Au + Au collisions. Negatively charged

gold ions are produce by a cesium sputter source operated in pulsed beam mode [19]. The

cesium sputter source in pulsed mode can deliver 500 μs pulses with a peak intensity of 290

μA without damaging the accelerator. In 2010 the ion source was upgraded to the Electron

Beam Ion Source (EBIS), which can deliver much higher intensities on the order of mA

why not build the moon of Mars, which is Phobos. And if that was still considered too
expensive, we figured we’d come up with Deimos, a still smaller moon of Mars. So that’s
the origin of the name.” [17]
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[20].

From the ion source the ions are injected into the Tandem Van de Graaff. They are partially

stripped to a positive charge state at the terminal (the filtering after the Tandem selects

those ions which were stripped to a +12 state) with a thin carbon foil (2 μg/cm2) [21], and

they are accelerated to an energy of 1 AMeV by the time they exit the Tandem. At the exit

of the Tandem, the ions are further stripped, and then filtered with dipole bending magnets

to select only ions with a charge state of +32 (which had been accelerated to 1 AMeV by

the Tandem) [22].

These are then sent into the Booster synchrotron, where they are bunched and accelerated

to 95 AMeV. After the Booster, the beam is again stripped and filtered so that all ions have

a charge state of +77 (helium-like). The ions are then sent into the AGS which accelerates

them to the RHIC injection energy of 10.8 AGeV, and fully strips the ions to a charge state

of +79. After being stripped and filtered, each bunch contains 109 ions and they are injected

into one of the two counter-rotating main RHIC rings via a switching magnet at the end of

the AGS-to-RHIC Beam Transfer Line. The injection of bunches into the main RHIC rings

continues until both beam lines are full which takes on the order of a minute [21].

Once in the main ring, the ions are accelerated up to the desired energy. The main ring can

collide energies from the injection energy of 10.8 AGeV up to a top operating energy of 100

AGeV (
√

sNN = 200 GeV, where
√

sNN is the energy per nucleon pair) for heavy ions and

250 GeV (
√

sNN = 500 GeV) for protons. Au + Au collisions have been run at RHIC at and

below the injection energy of
√

sNN = 19.6 GeV by lowering the energy of the ions from the

AGS and not accelerating the ions in the main ring (just using the rings for storage and not

ramping the beam). Energies down to
√

sNN = 7.7 GeV have been produced for Au+Au
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collisions.

The RHIC main ring has two independent beam lines separated 90 cm horizontally which

circulate in opposite directions [22]. As viewed from above, the clockwise beam is referred

to as blue, while counter-clockwise is yellow. The independent beam lines allow RHIC to

collide not just symmetric systems (p + p, Cu + Cu, and Au + Au), but also asymmetric

systems (d + Au). The main ring is composed of six 356 m ring arc segments and six 277

m long insertion segments. Each arc segment contains 11 sections which contain two dipole

superconducting magnets which bend the beams, and two quadrupole and two sextupole

superconducting magnets which focus the beams.

All of the data used in the analyses presented in this dissertation are from Au + Au collisions

collected during Runs 10 and 11 (taken in 2010 and 2011 respectively). Specifically, the data

for energies
√

sNN = 7.7, 11.5, 39, and 62.4 GeV were collected in Run 10. The energies

√
sNN = 19.6, 27, and 200 GeV were collected during Run 11. During Run 10,

√
sNN =

200 GeV was also run, but in Run 11 the data collection triggers were improved to prevent

pile-up in the detector, so only the Run 11 data are presented (see Section 3.7).

2.2 STAR

The data used in this dissertation were collected with the STAR detector. STAR is a

large acceptance detector with full azimuthal coverage (2π), good track resolution, and good

particle identification. The STAR detector is a combination of many detector subsystems

which are azimuthally symmetric about the beam pipe which run through the center of

STAR. All together, STAR is three stories tall and weighs 1,200 tons. Most of STAR’s
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Figure 2.2: Artist rendering of STAR with detector subsystems labeled. Figure produced by
Maria and Alexander Schmah.

weight comes from the room-temperature solenoid magnet which surrounds most of the

detector subsystems and weighs 1,100 tons. The STAR magnet can be run at either it’s full

field strength (0.5 T) or at half-full strength (0.25 T). The magnetic field is parallel to the

beam axis, and is uniform within 0.0040 T [23].

Many of the detector subsystems in STAR have changed since STAR’s commissioning in 2000.

The heart of STAR, the STAR Time Projection Chamber (TPC) has remained unchanged.

Section 2.3 is devoted to it. The Time of Flight detector (ToF) was added before Run 10 in

2010, and is discussed in Section 2.4. Other detector subsystems such as the Electromagnetic
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Figure 2.3: STAR detector subsystems. Adapted from Ref. [24].

Calorimeter (EMC), the upgraded pseudo-Vertex Position Detectors (upVPD), and the Zero

Degree Calorimeter (ZDC) are addressed in Section 2.5.

Figure 2.2 shows the STAR detector with the subsystems labeled. In this figure, the end

cap is pulled back so that the internals of STAR can be viewed. Coordinates in STAR are

often given in terms of the cartesian directions x, y, and z. These are defined such that

the x-axis points south, the y-axis points up, and the z-axis points west along the beam

line. The origin of the coordinate system (x = y = z = 0) is located at the geometric

center of STAR. Sometimes STAR coordinates are given in angular coordinates such that θ

is measured from the positive z-axis, and φ is measured from the positive y-axis. In practice,

θ-angles are rarely used and angular coverage with respect to the z-axis is usually given in

terms of pseudorapidity, η, which is defined as:
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η = − ln

(
tan

θ

2

)
. (2.1)

Starting from the beam pipe, the first detector that the particles will interact with is the

TPC. Near the beam pipe, outside of the TPC, are the upVPDs. Continuing radially aways

from the beam pipe, outside of the TPC is the ToF detector. Radially after the ToF is one

part of the EMC, the Barrel EMC (BEMC). The other part of the EMC, the End-cap EMC

(EEMC), is located in the positive z direction, outside of the upVPD. Outside of all of this

is the STAR magnet. Along the beam pipe, just outside the STAR magnet are the Beam

Beam Counters (BBC). The ZDCs are located 18 m down the beam line at the first bends

of the beam pipe.

2.3 Time Projection Chamber

The Time Projection Chamber is the heart of the STAR detector. The TPC is a gas detector

that measures particle’s tracks and can determine path length (Δs [cm]), momentum (p

[GeV/c]), and ionization energy loss (dE/dx [MeV/cm]) in the TPC gas. Figure 2.4 shows

a drawing of the STAR TPC. The STAR TPC was the largest TPC in the world for some

time until it was surpassed in 2004 by the TPC built for ALICE at the Large Hadron

Collider. The TPC is 4 m in diameter and 4.2 m in length. The TPC has full azimuthal

coverage (0 < φ < 2π), and covers a pseudorapidity range of −1 < η < 1 (equivalent to

45◦ < θ < 135◦).

The TPC can measure charged particle momenta for particles in the range of 100 MeV/c

up to 30 GeV/c [25]. The TPC is filled with a mixture of 10% methane and 90% argon gas,
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which is kept at 2 mb above atmospheric pressure. The positive pressure is maintained in

order to insure purity of the TPC gas; if there are any leaks, the TPC gas will leak out,

rather than air leaking in.

When a charged particle passes through the TPC, it ionizes the TPC gas. The released

electrons drift toward the ends of the TPC pushed there via an 135 V/cm electric field

maintained between the central membrane (located at z = 0) and the ends of the TPC via

an inner and outer field cage and the end caps. When the electrons reach the ends of the

TPC they trigger electron avalanches which amplify the track signals 1000-3000 times. The

electron drift velocity (5.45 cm/μs) and the time it takes the electrons to drift to the end

caps give a measure of the particle position in the z direction (parallel to the beam axis).

The position of the particle in the plane perpendicular to the beam axis is given by the

Multi-Wire Proportional Chambers (MWPC). The MWPC measures the temporary image

charge induced by the electron avalanche. The MWPC is highly segmented, with 12 sectors

each containing 5692 pads. The optimal efficiency of the MWPC is 96%, with the inefficiency

due to sector boundaries.
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Figure 2.4: Diagram of the STAR TPC. From Ref. [25].



Particle identification (PID) is possible with the TPC, because dE/dx is mass and charge

dependent. Pions and kaons can be reliably distinguished in the momentum range of 0.1 <

p < 0.7 GeV/c, and protons can be identified up to ∼1.0 GeV/c.

2.4 Time of Flight Detector

While the TPC can perform PID, it is limited to low momentum particles. The STAR Time

of Flight detector (ToF), in conjunction with the TPC, provides PID capabilities at much

larger momentum than the TPC alone. The ToF measures particle flight times (Δt [s]),

which when paired with track information from the TPC, gives the particle velocities (β),

and with it, mass (m [GeV/c2]).

Flight time determination requires two time measurements: a start time, t0, and a stop time,

tstop. Only the “stop” times are measured by the ToF, and the “start” times are provided by

the upVPDs. The upVPDs will be addressed in more detail in Section 2.5.1. There are two

upVPDs, located near the beam pipe to the east and west of the collision area. The upVPDs

measure photons from the collisions, so neither measures t0, but rather they measure teast

and twest, which can be written as:

teast = t0 +
L + Vz

c
(2.2) twest = t0 +

L − Vz

c
(2.3)

Where L is the distance from the upVPDs to the center of STAR, and Vz is the z-position

of the collision in STAR.2 From these, it can be seen that

t0 =
teast + twest

2
− L

c
. (2.4)

2This simplified formulation assumes that Vx = Vy = 0.
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From the start time t0 provided by the upVPDs, and the stop time tstop provided by the

ToF itself, the time of flight, Δt, can be calculated,

Δt = tstop − t0. (2.5)

Using the path length Δs from the TPC, it is possible to calculate the inverse velocity 1/β

via3,

1

β
=

Δt

Δs
. (2.6)

Additionally, using the momentum p from the TPC, we can calculate mass:

m =
p

γβ
=

p
√

1 − β2

β
= p

√(
1

β

)2
− 1 (2.7)

The relationship between 1/β and p is more sensitive to mass at larger values of p, so using

the ToF, pions and kaons can be identified up to ∼1.8 GeV/c and protons up to ∼3 GeV/c.

This extends the momentum region over which PID is possible by almost a factor of ∼3

compared to the TPC alone.

The ToF detector consists of 120 trays of Multigap Resitive Plate Chambers (MRPC). Each

ToF tray contains 32 MRPCs, for a total of 3840. The ToF trays are arranged in two rings

of 60 trays each surrounding the TPC inside the STAR magnet. A diagram showing the

placement of the ToF trays with respect to the TPC can be seen in Figure 2.5. The ToF covers

the full azimuthal range (0 < φ < 2π) and a pseudorapidity range of −0.94 < η < 0.94.

3In all of the equations presented here, we set c = 1
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Figure 2.5: Location of one tray of the STAR ToF. From the ToF proposal and documenta-
tion Ref. [26].

Each MRPC consists of a stack of seven glass plates with 220-μm wide gaps between each

plate as can bee seen in Figures 2.6 and 2.7 [26]. On either side of this stack are graphite

electrodes which generate a large potential difference across the stack (of order 15.5-17 kV).

Outside of the peripheral graphite electrode is a PCB with six copper readout pads. When

a charge particle passes through the MRPC, it will ionize the gas between the plates. The

large potential difference causes an electron avalanche, which is detected by the readout

pads.
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Figure 2.6: Layout of each MRPC from the STAR ToF. From the ToF proposal and documentation, Ref. [26]. Continued in
Figure 2.7.
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Figure 2.7: Layout of each MRPC from the STAR ToF. From the ToF proposal and documentation, Ref. [26]. Continued from
Figure 2.6.
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For each event, all ToF hits are mapped and compared to a map of the reconstructed tracks

from the TPC. For ToF cells that mapped to only one reconstructed track, the ToF infor-

mation is associated with the TPC track. The ToF-TPC matching introduces an additional

inefficiency, which can be seen plotted in Figure 2.8. The efficiency is both mass and pt

dependent for pt < 1 GeV/c, and above pt < 1 GeV/c the efficiency is constant at about

70%.

2.5 Other STAR Subsystems

The TPC and ToF are the primary detectors which measure individual track data, but

there are many other detector subsystems which are used for triggering, vertex position

determination, background suppression, and analysis specific data.

2.5.1 Vertex Position Detectors

There are two upgraded pseudo-vertex position detectors (upVPDS), which are located near

the beam line, inside of STAR, outside of the TPC. Their location can be seen variously in

Figures 2.2, 2.3, and 2.5. The upVPDs were installed in 2006 as an upgrade to replace the

previous pseudo-vertex detectors (pVPDs).

Each upVPD consists of 19 assemblies, where each assembly contains two cylindrical disks

of lead (total thickness of 1/4 inch) which act as a converter, backed by a cylindrical disk

of plastic scintillator (thickness 1 cm), all mounted on a photomultiplier tube (PMT). All

parts of the assembly (lead, scintillator, and PMT) have a diameter of 1.5 inches [27].
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Figure 2.8: ToF matching efficiency for identified particle species. From Ref. [1].
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The upVPDs are not only used to determine the start-time for each event, as described in

Section 2.4, their secondary purpose is to determine the location of the event vertex along

the beam axis. From Equations 2.2 and 2.3 we can see that,

Vz =
(teast − twest) c

2
. (2.8)

2.5.2 Electromagnetic Calorimeters

The Electromagnetic Calorimeter (EMC), consists of two independent detectors: the Barrel

EMC (BEMC), and End cap EMC (EEMC). The BEMC is installed outside the ToF de-

tector, inside of the STAR magnet, has full azimuthal acceptance (0 < φ < 2π), and covers

pseudorapidity −1 < η < 1. The EEMC is installed in the west end cap, and covers the

forward pseudorapidity region 1.09 < η < 2, also with full azimuthal coverage. Both the

BEMC and EEMC are lead- scintillator sampling calorimeters which can measure particle

energy and be used for triggering.

2.5.3 Beam Beam Counters

The Beam Beam Counters (BBC) are scintillator annuli installed around the beam pipe just

outside the pole tips of the STAR magnet. They were built to be used as local polarimeters

for use with polarized protons beams, although they are also used as triggers. Each of the

BBC detectors consists of 36 scintillator tiles divided into two groups of 18. The two groups

of tiles are different sizes, and arranged into two rings, as can be seen in Figure 2.9. Each of

the detectors is placed 3.75 meters aways from the center of STAR.
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Figure 2.9: The layout of the BBC detectors. Ref. [28].
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2.5.4 Zero Degree Calorimeters

The Zero Degree Calorimeters (ZDCs) are small hadronic calorimeters located approximately

18 meters from the center of STAR on the beam axis after the first bends in the beam line.

The acceptance area is very small, extending only approximately 5 cm away from the beam

axis. The ZDCs consist of three modules, each a layer of lead and a layer of plastic scintillator.

The ZDCs mostly detects spectator neutrons and is used for triggering as well as monitoring

the beam luminosity.
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Chapter 3

Data from the Beam Energy Scan

3.1 RHIC Beam Energy Scan

All of the data used in this dissertation were collected during Runs 10 and 11, taken during

years 2010 and 2011 respectively. The data collected during Runs 10 and 11 were from the

RHIC Beam Energy Scan (BES). The purpose of the BES was to systematically explore a

large energy range, which corresponds to a large part of μB-T space of the nuclear phase

diagram (see Figure 1.3). All of the BES energies were done with Au+Au collisions. The

energies run during the BES, and also the energies analyzed in this thesis, are
√

sNN = 7.7,

11.5, 19.6, 27, 39, 62.4, and 200 GeV. The data sets used in this analysis are listed in Table

3.1 along with calculated μB values corresponding to the collision energy, the year the data

were taken, and the number of events used for each energy.

There are various units of measurement for the data collected at STAR. Each year’s total data

is designated by “Run” number. The first year that data were taken was 2001, corresponding

to Run 1, resulting in a convenient correlation between year in the decade and Run number.

Over the course of one year’s Run, many energies and species may be collided. While running

each day there are several “fills”, where the RHIC ring is filled with nuclei, the nuclei are

ramped up to the desired energy, collisions are performed and physics is taken. When the
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√
sNN (GeV) 〈μB〉 (MeV) Year Species Events (M)

7.7 421 2010 Au+Au 1.6
11.5 316 2010 Au+Au 2.4
19.6 206 2011 Au+Au 16.3
27 156 2011 Au+Au 44.4
39 112 2010 Au+Au 10.7

62.4 73 2010 Au+Au 34.5
200 24 2011 Au+Au 23

Table 3.1: Table of run data for data sets used in this dissertation. The baryon chemical
potential (〈μB〉) values are from Ref. [10].

beam luminosity becomes too low, the fill is dumped. Over the course of a single fill many

“runs” are taken. It is an unfortunate that the term “run” is used twice, but it is convention.

A run may last a few minutes or a few hours depending on the energies and species being

collided, the data triggers being used, and the physics goals. Usually, the primary constraint

on the length of a run is the size of the resulting data files. Most people prefer multiple

manageably-sized data files to a few unwieldy ones. An additional advantage of taking many

smaller runs is that if the detector changes over the course of a fill it can be identified.

For each energy, only a subset of the full data taken was used in the analysis. The full data

set was processed, and periods with a minimum of detector problems and strong consistency

of quality assurance observables were selected as good runs for use in the analysis. The good

run determination is discussed in more detail in Section 3.2. Many of the detectors used

in the analysis require calibrations before and during each run; some of these calibrations

are discussed in Section 3.3. Some of the important measures, notably the multiplicity of

each event, depend upon other observables such as beam luminosity and vertex position.

Those observables are corrected for these effects, and the procedure and the corrections are

discussed in Section 3.5. In addition to all of these methods of quality assurance, analysis

cuts are placed on the tracks of each event to diminish backgrounds, suppress secondary
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interactions, and to ensure uniform detector performance. These track cuts are discussed in

Section 3.4. As was discussed in Section 1.3.2, event centrality strongly affects many physics

observables. The method of centrality determination is discussed in Section 3.6.

3.2 Good Run Determination

During the course of an experiment many things can go wrong and many things can change;

the magnet may trip, detector power supplies may fail, TPC read out boards may stop

working, ToF trays may stop working, TPC anodes may short out, the beam may get

dumped, and the beam may even accidentally get dumped in the detector. The reason why

things go wrong is often not clear, and often the fix is to power cycle the system which is

having problems. If power cycling the system doesn’t work, often the next step is to power

cycle the power supply crates for that system as soon as an experimental access is possible.

In some cases, when systems aren’t fixed by simple solutions, they are masked out of the

data acquisition system until an expert can address them or an extended access is possible.

These variations in the state and quality of the detectors means that often a substantial part

of the data taken is unusable for particular analyses.

These variations are addressed by “good run selection”, where by the entire data set is looked

over, and sections of the data are selected where quality assurance observables remained

constant, and there were no major problems with the detector.
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3.3 Calibrations

The data from every detector have to be digitized and processed before they are useful for

analysis. Here we will address calibrations that needed to be performed on the data from

two of the primary detectors: the TPC and the ToF. Calibrating detectors is a large under-

taking which is shared by all members of the STAR collaboration. The types of calibrations

which are performed and the general approaches are explained here, but for more detailed

information the reader should consult the referenced material.

3.3.1 TPC Calibrations

The STAR TPC is calibrated by use of two Nd:YAG (neodymium-doped yttrium aluminum

garnet; Nd:Y3Al5O12) lasers [29]. This type of laser was selected because it could deliver

a beam of sufficient energy density(2-10 μJ/mm2) to produce ionization of the TPC gas

equivalent to minimum-ionizing particles without the addition of organic gas additives which

would accelerate aging. The beams from the two lasers are expanded to 30 mm in diameter

then directed at splitters on the TPC end caps that split each beam into six beams of equal

intensity, all of which are directed parallel to the beam axis. Each of these twelve beams

is incident upon a six separate bundles of seven mirrors, placed at intervals along the TPC

length. This arrangement produces a total of 504 laser beams that cover the entire TPC

volume. The laser mirrors are mounted on dielectrics, and the laser beams can be positioned

to an accuracy of 50 μ [29]. Figure 3.1 shows an example of a reconstructed laser calibration

run in the TPC.

Laser calibrations are taken at regular intervals during data collection to ensure that any
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Figure 3.1: An event reconstruction of the lasers used in the TPC calibration. From Ref.
[30].

changes in the performance of the TPC is noted. The TPC calibration procedure consists

of reconstructing the signals produced by the TPC so that the reconstructed laser tracks

coincide with their known spatial locations.

3.3.2 ToF Calibrations

There are many calibrations done to the data from the ToF detector before it is used in any

analysis. These calibrations fall into two categories: calibrations done to address hardware

properties which remain unchanged with time, and run-by-run calibrations. There are two

hardware calibrations of significance: correcting for the integrated non-linearity (INL) of the

36



timing chips, and correcting for signal delays due to differences in cabling length. There are

two run-by-run calibrations of note: correcting for “slewing”, a detector effect where particles

which deposit more energy into the detector get read as arriving earlier, and correcting for

the “Zhit” effect.

All of the hardware calibration measurements were carried out at Rice University during the

assembly and testing of the ToF detector. The INL effect is a consequence of the timing chips

used in the ToF trays, and arrises from the fact that when signals come in they are binned

according to arrival time, but the widths of these bins are not identical. Each timing chip

has different INL behavior, and these were all measured extensively before being installed in

STAR. The other hardware calibration is to address cable-length delays. These are delays in

signals from ToF trays which are further from the data acquisition system in terms of cable

length.

3.4 Track Cuts

Even after good run and good event selection, there can still be bad events in good runs.

Also, in good events, not all tracks are usable for analysis. Events can be rejected if the

vertex is located too far from the center of the STAR detector. The vertex position with is

given given as a point (Vx, Vy, Vz) with the origin at the center of STAR. For all energies the

vertex is required to be located within 2 cm of the center of the beam axis (
√

V 2
x + V 2

y < 2

cm). This is to ensure that the vertex is not to close to the beam pipe, also the further the

reconstructed vertex is from the center of the beam axis, the more likely it is that it was

mis-reconstructed and is not correct. Additionally, the vertex is required to be within 30 cm
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√
sNN Year pt (GeV/c) η Vz (cm) DCA (cm)

√
V 2

x + V 2
y (cm)

7.7 GeV 2010 0.15 < pt < 2.0 |η| < 1.0 |Vz| < 30.0 DCA < 1.0
√

V 2
x + V 2

y < 2.0

11 GeV 2010 0.15 < pt < 2.0 |η| < 1.0 |Vz| < 30.0 DCA < 1.0
√

V 2
x + V 2

y < 2.0

19.6 GeV 2011 0.15 < pt < 2.0 |η| < 1.0 |Vz| < 30.0 DCA < 1.0
√

V 2
x + V 2

y < 2.0

27 GeV 2011 0.15 < pt < 2.0 |η| < 1.0 |Vz| < 30.0 DCA < 1.0
√

V 2
x + V 2

y < 2.0

39 GeV 2010 0.15 < pt < 2.0 |η| < 1.0 |Vz| < 30.0 DCA < 1.0
√

V 2
x + V 2

y < 2.0

62.4 GeV 2010 0.15 < pt < 2.0 |η| < 1.0 |Vz| < 30.0 DCA < 1.0
√

V 2
x + V 2

y < 2.0

200 GeV 2011 0.15 < pt < 2.0 |η| < 1.0 |Vz| < 30.0 DCA < 1.0
√

V 2
x + V 2

y < 2.0

Table 3.2: The data sets and analysis cuts used in this analysis. The pt and η cuts were
selected to agree with previous analyses.

of STAR along the beam axis for all energies (Vz < 30 cm). Especially at lower energies,

where the beam is less focused, it is possible for collisions to happen far from the center of

STAR, but for these events the STAR acceptance is not symmetric and the probability of

having missing tracks grows. Tracks are also cut on the distance of closest approach (DCA)

between the track and the event vertex.

3.5 Multiplicity Corrections

As was discussed in Section 1.3.2, the centrality of a collision is determined from the mul-

tiplicity the event deposits in the detector. The method of centrality determination will be

discussed in depth in Section 3.6. Here we will introduce two multiplicity measures which

are used in STAR and discuss how they are corrected for dependence on other observables.

Multiplicity corrections are a large undertaking which is shared by all members of the STAR

collaboration.

The primary multiplicity value used in most analyses, and used throughout most of this
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dissertation is refMult. RefMult is defined as the number of charged particles detected

within the rapidity range −0.5 < η < 0.5. This value, however, is observed to depend on

several other measures: beam luminosity (as measured by the ZDC, see Section 2.5.4), and

vertex position along the beam axis (Vz). The dependence upon beam luminosity can be

explained logically by the fact that at higher beam luminosities there are large backgrounds,

so naturally the number of tracks in the detector should be higher. The dependence upon

Vz happens because events with larger Vz values occur closer to the ends of the detector,

and more of the tracks are lost, resulting in a lower observed multiplicity.

The other multiplicity definition used in this dissertation is refMult2. There are observables

that are based on the distribution of event-by-event multiplicties. Centrality determination is

still necessary in these analyses, but using the same multiplicity observable for centrality cuts

as is being studied introduces bias which is known as “auto-correlations”. Several alternative

multiplicity definitions have been proposed, one of which is refMult2. The analyses presented

in this dissertation are not directly related to multiplicity, but event multiplicity and 〈pt〉 are

known to be correlated, so checks were performed to ensure there where no auto-correlations

(see Section 6.4).

refMult2 is defined as the number of charged particles seen in the detector in the rapid-

ity range 0.5 < |η| < 1.0. Observables using refMult2 for the centrality determination are

restricted to the tracks within |η| < 0.5, so that none of the tracks used in the centrality

determination are included in the analysis. RefMult2 has similar dependence upon beam

luminosity and Vz as refMult, and the same corrections done for refMult were done indepen-

dently for refMult2.
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3.6 Centrality Determination

After the multiplicity has been corrected, centrality determination is done using wounded

nucleon Glauber Monte Carlo simulations. Centrality determination assumes that there is

a monotonic relationship between impact parameter and multiplicity, dN/db, where N is

the multiplicity and b is the impact parameter. There are many ways to determine the

relationship between impact parameter and multiplicity, we use a wounded nucleon Monte

Carlo simulation. Wounded nucleon Glauber Monte Carlo is a type of heavy-ion collision

simulation. In it each nucleus is modeled as a spherical bundle of nucleons. An impact

parameter is chosen randomly from an appropriate distribution, and then the nuclei are

collided. All nucleons are assumed to travel in straight lines, and nucleon collisions are de-

termined using a nucleon-nucleon cross-section (taken from proton-proton collisions). From

just this information, the number of participants (Npart), and number of binary collisions

(Ncoll) can be extracted. The Glauber Ncoll distribution can then be extrapolated to a

multiplicity distribution by assuming that each collision will produce a random number of

particles given by a negative binomial distribution (NDB). The Glauber simulation and NBD

are fit to the experimental multiplicity distribution by tuning the parameters of the model

and NBD.

Using the wounded nucleon model allows an approximate mapping between the impact

parameter of the colliding nuclei and the observed multiplicity. The model also allows the

multiplicity distribution to be extended all the way to multiplicties of one. Experimentally,

the multiplicity distribution is truncated for small multiplicity values. The efficiency of

detecting events begins to drop for events with multiplicity less than 20 (Ref. [31]) due to

trigger inefficiencies (Section 3.7 for trigger definition).
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Having the full multiplicity distribution is important because centrality bins are defined as

fractions of the whole distribution. Centrality bins are given as percentages of the whole, and

are defined such that the most central events are those in the first few percent (0-5%), and

the most peripheral events are those in the last few percent (90-100%). These centrality bins

are calculated by integrating the entire Glauber simulated multiplicity distribution to get the

total multiplicity, then integrating the distribution from the highest observed multiplicity

value down towards zero until the appropriate fraction of the total has been accounted

for.

Figure 3.2 illustrates the relationship between impact parameter, Npart, the total number of

observed particles (Ntotal), and centrality for Au+Au. The figure is not data, and is only

meant to illustrate the relationship between centrality and multiplicity. In the figure, Ntotal

corresponds to approximately twice refMult because refMult is equivalent to Ntotal measured

in the region |η| < 0.5.

The centrality bin cuts for the refMult multiplicity observable used in this dissertation are

listed in Table 3.3. Centrality bins were calculated in steps of 10% of the total refMult

distribution, except for the two most central bins which were done in steps of 5%. Only the

first eight centrality bins were used.

Table 3.4 lists the total number of events in each centrality bin for each energy used in the

analyses of this dissertation. Note that the number of events in each 10% bin is approximately

equal, and is twice that as in the 5% bins, as should be expected.
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Figure 3.2: An illustration of the relationship between impact parameter, Npart, the total
number of observed particles (Ntotal), and centrality for Au+Au collisions. This figure is
not experimental data, and is only meant for illustrative purposes. The values of Ntotal will
change with collision energy. From Ref. [32].
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√
sNN 0-5% 5-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80%

7.7 GeV 185 154 106 72 46 28 16 8 4
11.5 GeV 221 184 127 86 56 34 19.6 10 5
19.6 GeV 263 220 152 102 66 40 23 12 6
27 GeV 288 241 168 114 74 45 26 13 6
39 GeV 316 265 185 125 81 50 28 15 7

62.4 GeV 339 285 196 135 88 54 30 16 7
200 GeV 466 396 281 193 125 76 43 22 10

Table 3.3: Lower reference multiplicity cuts (refMult) used per centrality bin. The upper multiplicity cut for the most central
bin was set arbitrarily high, and the lower cut for the most peripheral bin was set to 0.

Energy 0-5% 5-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% Total
7.7 GeV 80k 83k 173k 173k 183k 180k 178k 189k 159k 1,607k
11.5 GeV 127k 128k 262k 264k 263k 271k 276k 265k 236k 2,373k
19.6 GeV 921k 882k 1,836k 1,878k 1,853k 1,879k 1,808k 1,831k 1,603k 16,319.6k
27 GeV 2,361k 2,407k 4,879k 4,954k 4,985k 5,051k 4,849k 5,249k 4,928k 44,385k
39 GeV 587k 584k 1,179k 1,206k 1,196k 1,169k 1,210k 1,129k 1,176k 10,707k

62.4 GeV 1,858k 1,886k 3,827k 3,822k 3,776k 3,776k 3,908k 3,605k 3,995k 34,479k
200 GeV 1,480k 1,507k 2,884k 2,764k 2,763k 2,691k 2,599k 2,507k 2,124k 23,030k

Table 3.4: The number of events in each centrality bin which passed the analysis cuts. Note that for each energy the number
events in each 10% bin is approximately equal and twice that in the two 5% bins, as should be expected.



3.7 Trigger Definition

The Star Data Acquisition system (DAQ) records events when the appropriate trigger condi-

tions are satisfied. For this dissertation most of the data were collected using the minimum-

bias trigger, which was defined as a coincidence of the signals from the ZDC, the upVPD

and/or BBC. The 200 GeV data were collected using a pile-up rejection trigger. The pile-up

rejection trigger was defined the same as the minimum-bias trigger, but events would not be

recorded if there had been a event ≈ 40 μs before or after the triggered event. The timing is

set by the size of the TPC and the electron drift velocity. It is set so that there is sufficient

time for all of the electrons to clear the TPC volume. Pile-up occurs when charges from

tracks associated with previous or following events are within the TPC volume when the

current event is recorded. These “piled up” tracks can possibly be assigned to the wrong

event, and can bias analyses. Pile-up becomes more of a problem as beam luminosity and

beam energy increase, which is why the pile up rejection trigger was used for 200 GeV.

3.8 The UrQMD Model

The Ultrarelativistic Quantum Molecular Dynamics model (UrQMD) is a microscopic model

used to simulate (ultra)relativistic heavy ion collisons [33, 34]. UrQMD is a microscopic

transport model. Nuclei are modeled in three-dimensions as clusters of hadrons. Two nu-

clei are collided, and hadron interactions are determined by experimentally measured cross

sections. For energies
√

sNN < 5 GeV the phenomenology of hadronic interactions is de-

scribed in terms of interactions between known hadrons and their resonances. For energies

√
sNN > 5 GeV particle production is dominated by the excitation of color strings and their
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subsequent fragmentation into hadrons.

Throughout this dissertation, results are compared with those given by UrQMD. In addition

to the data from the BES, a set of model data was produced by UrQMD. We use version 3.3

and all parameters are set to default settings. Only events for the most central centrality

bin (0-5%) were generated, using randomly selected impact parameters in the range of 0.0 -

3.12 fm. The analyses performed on the UrQMD data sets where done in the same manner

as done on the BES data sets, with the exception that 〈pt〉 was treated as invariant with

multiplicity.
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Chapter 4

Motivation and Construction of

Analyses

4.1 Event-by-event Observables

Prior to the 1960’s, the number of statistics taken in heavy-ion experiments, both the number

of collisions detected and the number of tracks from an event observed, were so small that

all measurements had to be constructed such that they were aggregates over many events.

For example, particle multiplicities and track spectra were both studied by averaging or

summing over many events. Modern experiments produce both sufficient statistics and have

sufficient geometric coverage that event-by-event observables can be constructed. All of the

analyses presented in this dissertation are event-by-event analyses.

The advantage of event-by-event analyses over inclusive analyses is that they are more sensi-

tive to state changes. This is well illustrated by a clever analogy: on a rainy day hold a piece

of paper outside. If you have the paper in the rain long enough, it will become completely

wet, this corresponds to taking an average. If however, you only leave the paper outside

for a few seconds, you will observe only wet spots from the droplets of rain. The uniformly

wet paper would suggest that the rain is a uniform mist, however the second quick measure
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demonstrates the droplet nature of rain1. One can imagine how varying the orientation of

the paper may reveal the speed and direction of the rain, or how a careful study of the spots

may reveal information about rain droplet size or surface tension, or perhaps if sufficient

statistics were taken rarer forms of precipitation may be observed such as snow or hail.

In central collisions at 200 GeV, on the order of 103 particles are deposited into the de-

tector. At each energies presented in this dissertation there are millions of events. Using

event-by-event observables opens the possibility of observing phase transitions and gaining

qualitatively different information than using event-averaged observables.

4.2 Fluctuations versus Correlations

Throughout this dissertation, the terms ‘correlations’ and ‘fluctuations’ are often used in-

terchangeably. The reason for this is that their meaning is very similar and in some cases

synonymous. Strictly speaking they mean slightly different things, but their meaning varies

by usage and individual. A correlation is typically a function of a multi-particle property (for

example the invariant momentum of two particles) which measures how many multi-particle

groups are observed with a given value of that property (how the number of observed pairs

of particles changes with invariant momentum). Fluctuation measurements on the other

hand are generally a integral or summation of a correlation function. In this way, correlation

measurements generally have finer ‘resolution’ than fluctuation measurements. In this dis-

sertation I present a two-particle correlation, but it is actually an average over a two particle

correlation, so it could be more accurately called a fluctuation observable.

1This analogy is originally from Prof. A.D. Jackson
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Experimental fluctuation and correlation measurements have generally followed two ap-

proaches. The first approach has been to characterize the distribution of the observation

parameter under consideration by variances, covariances, or higher moments. The second

approach has been to characterize the fluctuations with correlation functions such as balance

functions or multi-particle correlators. These two approaches are equivalent, which will be

demonstrated in the following sections.

4.3 〈pt〉 Fluctuations

Event-by-event fluctuation analyses can be done for several observables such as multiplicity,

transverse energy, and momentum. Transverse momentum, and momentum more generally,

are relevant quantities to be studied because they are proxies of the state variable temper-

ature. To a large degree, the pt distributions are thermal [35] so their shape is determined

principally by the masses of the particles and the temperature of the body from which they

were emitted.

Referring to the ‘temperature’ of the pt distribution makes a number of assumptions about

the underlying system, namely that the system can be treated thermodynamically and that

it was (at least locally) thermally equilibrated. These assumptions are still uncertain, and

the second in particular can be strongly questioned just from the basis of the short system

lifetime, but the particle spectra do suggest thermal behavior. In the case of nucleon-nucleon

collisions, a thermal treatment seems less well founded, and heavy-ion collisions tend toward

nucleon-nucleon collisions as they become less central, so at some point the thermal treatment

of heavy-ion collisions becomes invalid. At what point this occurs has not been thoroughly
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established. Some of the analyses in this dissertation may be illuminating in trying to

quantify this transition.

Before beginning, it is interesting to consider the general nature of 〈pt〉 fluctuations. As

previously stated, the fluctuations of 〈pt〉 are of interest because is 〈pt〉 related to the tem-

perature of the system. In an ideal situation, the fluctuations of 〈pt〉 would correspond

directly to fluctuations of the temperature of the system. Our systems are not ideal: the

number of particles per event is finite, the statistics are limited, and there are physical

processes which could cause 〈pt〉 to fluctuate.

In an idealized scenario, we can imagine that our events are observations of a thermal system

of fixed chemical composition, the temperate of every event is identical, and the multiplicity

N is uncorrelated to any other properties of the system and can be arbitrarily large (and

we will say it is the same in every event for simplicity). This system is clearly non-physical,

but it serves to illustrate a point. In this case, each event is a sampling from an identical

thermal pt distribution with mean 〈pt〉 and variance σ2
pt . From the central limit theorem we

can calculate the mean and variance of the 〈pt〉 distribution,

〈〈pt〉〉 = 〈pt〉

σ2
〈pt〉 =

σ2
pt
N .

(4.1)

The point of note is that the observed fluctuations of 〈pt〉 are purely statistical. In the limit

of N → ∞ we see that σ2
〈pt〉 → 0.

We can imagine now a similar scenario, but where the temperature of the underlying dis-

tribution fluctuates. Because the distribution is still purely thermal, fluctuations of the

temperature (σ2
T) will result in fluctuations of both 〈pt〉 and σ2

pt event-by-event. For clarity
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of notation, we will say that the event-by-event fluctuations of temperature results in dy-

namic fluctuations of 〈pt〉, σ2
〈pt〉,dynamic. In this case, we will still find that 〈〈pt〉〉 = 〈pt〉, but

the fluctuations of the 〈pt〉 distribution are no longer purely statistical. The fluctuations of

the 〈pt〉 distribution will be,

σ2
〈pt〉 = σ2

〈pt〉,dynamic +

〈
σ2

pt
N

〉
. (4.2)

Now, in the limit of N → ∞ we see that σ2
〈pt〉 → σ2

〈pt〉,dynamic. In this ideal case σ2
〈pt〉,dynamic

is entirely a consequence of temperature fluctuations. In real events, there are many physical

processes which could give rise to event-by-event, non-statistical fluctuations in 〈pt〉. These

non-thermal contributions to σ2
〈pt〉,dynamic are addressed in length in Section 4.6.

In addition to the second moment of 〈pt〉 shown in Eq. 4.2, similar arguments can be made

for higher moments of 〈pt〉. Each higher moment will have a dynamic component and a

purely statistical component resulting from finite multiplicity. Throughout this dissertation

the dynamic component of the higher moments are called the higher dynamic moments to

distinguish them from the measured higher moments.

4.4 Mixed and Statistically Sampled Events

Throughout the analyses presented in this dissertation, ‘mixed’ events and ‘statistically

sampled’ events are used. Both are different approaches to creating ‘data’ which have all

of the same detector effects, analysis effects, and physics as the real data, but without any

correlations.
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Mixed events are more complicated to generate that statistically sampled events, but they

more faithfully fulfill the intention of reproducing the data while removing correlations and

have utility outside of pt analyses. Mixed events are events generated from the data by

combining tracks selected from different events. The tracks of all events are “mixed” in that

a particular mixed event will have tracks from many different real events. Because each track

came from a different event, they cannot be correlated except statistically. Mixed events have

been used previously in experimental analyses [1, 36]. The procedure for generating mixed

events is the same as in [1].

Statistically sampled events contain much less information than real or mixed events. Unlike

mixed events they do not have individual tracks, but are rather just an 〈pt〉 and a multiplicity.

From the real data for each energy and centrality bin two spectra were generated: a spectrum

of the event multiplicity, and a spectrum of each track’s pt from all events. Statistically

sampled events were generated from these two spectra by randomly sampling the multiplicity

distribution for a number N , then sampling N times from the pt distribution. These N

samplings were averaged, giving an 〈pt〉. This was repeated many times (several million,

depending on energy, centrality bin, and the particular analysis), which generated a new,

statistical 〈pt〉 distribution. An example of one of these statistical distributions, compared

with an experimental distribution, is shown in Figure 4.1.

The intention of both of these approaches is to generate events where the higher dynamic

moments are zero by construction. The measured higher moments of mixed and statistically

sampled events are identical to the statistical component of the measured higher moments

of the data. Their utility is that they allow us to extract the higher dynamic moments by

subtracting the statistical component from the measured higher moments.
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Figure 4.1: Spectra of 〈pt〉 for 200 GeV from data and from the statistically sampled method.
The real data are wider (has a larger variance) which indicates that there are dynamic
correlations in the real data which are not reproduced by the statistically sampled baseline.
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4.5 Analyses in this Dissertation

There are two analyses presented in this dissertation, one measuring the two particle cor-

relator
〈
Δpt,i, Δpt,j

〉
, and another measuring the moments of the 〈pt〉 distributions. These

two analyses take different approaches but are closely related. The first analysis corresponds

to directly measuring σ2
〈pt〉,dynamic, while the second corresponds to measuring the total

fluctuations, both dynamic and statistical, of the higher moments.

The theoretical motivation for these analyses is presented along with competing physical

effect in the Section 4.6. Each of these analyses, their respective mathematical constructions,

subtleties, and necessary consideration will be introduced in Sections 4.7 and 4.8, then they

each have several chapters devoted to results, analysis details, and comparisons.

4.6 Sources of Fluctuations

There are many physical processes which may give rise to fluctuations. The most exciting

of these processes are the critical point and a change in the order of the QCD phase tran-

sition which may give rise to dynamic fluctuations. There are however many other possible

sources of fluctuations. The myriad of possible sources for statistical and dynamic 〈pt〉 fluc-

tuations may limit our capacity to draw concrete physical conclusions from the results of

these analyses. For many of these extra sources of fluctuations the degree to which they

affect dynamic 〈pt〉 fluctuations has not been quantified experimentally or theoretically. As

with many heavy-ion analyses, these results on their own may be inadequate for making

definitive conclusions. The results of the analyses presented in this dissertation will have to

be weighed hand-in-hand with results from other forthcoming analyses in order to make con-
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crete statements about the physical behavior of the systems we have produced. Establishing

the existence of the QGP was similar in that there were several analyses which suggested

the formation of a QGP, but each on their own was not definitive.

Below is presented a list of possible sources of statistical and dynamic fluctuations. The

list is not exhaustive, but effort has been made to include those sources which should most

largely affect the present analyses.

4.6.1 Jets

During the initial collision, sometimes a parton picks up a large amount of energy from hard

interactions and is ejected from the medium. The parton will hadronize as it exits the vol-

ume, and will produce a spatially localized collection of strongly-correlated high momentum

particles, referred to as a ‘jet’. Jets will affect the shape of the pt distribution, increasing

the variance σpt . Jets increase with collision energy, as does the initial temperature. Both

of these effects increase σ2
pt and may be hard to disentangle. We minimize the effects of jets

by analyzing particles in the range of 0.15 < pt < 2.0 GeV/c.

A related effect is high pt particle suppression and jet suppression. High pt particle sup-

pression was one of the key signals of QGP formation [37]. This effect has been observed

to decrease with energy, disappearing at energies below
√

sNN = 19.6 GeV (see Figure

4.2).

An important question to ask is how these effects will affect fluctuations of 〈pt〉. The sta-

tistical component of 〈pt〉 depends upon σ2
pt , so it will increase in the presence of jets and

decrease when there is high pt particle suppression. Dynamic fluctuations in jets or high
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Figure 4.2: The momentum and energy dependence of the nuclear modification factor RCP.
RCP is the ratio of charged particles observed in the data with the number of binary colli-
sions in a Wounded Nucleon Glauber Monte Carlo simulation fit to the data. For energies√

sNN ≥19.6 Ge, the decrease in RCP above pt ≈ 2.5 GeV/c indicates high pt particle
suppression. From Ref. [38]
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pt particle suppression will result in dynamic fluctuations of 〈pt〉, the magnitude of which

will depend upon the magnitude of the fluctuations and the magnitude of the effects on

〈pt〉.

4.6.2 Flow

Flow is an effect where non-symmetric spatial anisotropy results in non-symmetric momen-

tum anisotropy. When two nuclei collide in a mid-peripheral collision, the overlap region

will be almond or football shaped (see Figure 3.2). The nuclei are taken to be in a plane

that passes through the beam axis and the center of both nuclei, called the event plane.

Elliptic flow arises because the larger spatial gradient along the short axis of the collision

region will result in a larger pressure gradient. Particles emitted along this axis (in the event

plane) will have on average larger momenta than those emitted perpendicular to the event

plane. Elliptic flow corresponds to variations in pt of the form cos (2φ), where φ is the angle

with respect to the event plane. There are other types of flow corresponding to higher order

harmonics, cos (nφ).

Elliptic flow will affect the shape of the pt spectra, broadening the pt spectra (and increasing

the statistical fluctuations). Because flow is a consequence of geometry, for events of the

same energy and centrality it should largely be constant event-by-event and so should not

change 〈pt〉. In general flow should not effect dynamic 〈pt〉 correlations. Elliptic flow will

only produce dynamic correlations if it itself fluctuates dynamically, or if the experimental

acceptance is not axially symmetric (for example, if there was a dead sector in the TPC).

Non-uniform acceptance will produce dynamic correlations because events in which the event

plane points into the dead sector will have smaller measured 〈pt〉 (because some of the event’s
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high pt tracks will be lost), while events in which the event plane points perpendicular to

the dead sector will have larger measured 〈pt〉 (because some of the event’s low pt tracks will

be lost). It is important to note that while the true values of 〈pt〉 may not be changing, the

measured values of 〈pt〉 will fluctuate which will result in dynamic correlations.

The magnitude of this effect will depend on many effects such as centrality, energy, the

species of the nuclei, as well as how much of the detector is affected and to what magnitude.

This effect has been studied experimentally, and the results are presented in Ref [39]. In

the data presented in this thesis, great care has been taken to minimize detector acceptance

effects to minimize any contributions to the observed pt fluctuations.

4.6.3 Resonance Decays

Many of the particles produced in heavy-ion collisions are unstable. Instead of the original

unstable particle (the mother particle) it is the decay products (the daughter particles) which

are measured by STAR. Each of the daughter particles will carry some fraction of the mother

particle’s momentum. This will affect the pt distribution, decreasing σpt because some tracks

will be replaced by several lower momentum tracks. This will also affect the 〈pt〉 distribution

because the average momentum of the daughter particles will be substantially smaller than

the momentum of the mother particle. To estimate the scale of this effect we can imagine a

simplified case where an event has N particles, average transverse momentum 〈pt〉, and one

particle with transverse momentum pt,i, decays in Nd particles, each with identical transverse

momentum pt,iε where ε = 1
Nd

2. Note
∑Nd

i=1 pt,iε = pt,i. The average transverse momentum

2This assumes that all of the daughter particles continue in the exact same direction of
the mother particle and that the mass difference in the decay is negligible.
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of the daughter particles is then
pt,i
Nd

. The new measured total transverse momentum of the

event will be,

〈pt〉measured =
N 〈pt〉 − pt,i + Nd

pt,i
Nd

N − 1 + Nd
. (4.3)

We will assume that N >> 1 and simplify to,

〈pt〉measured =
N 〈pt〉
N + Nd

. (4.4)

To summarize, for each decay the measured average transverse momentum will decrease by

a factor f = 1

1+
Nd
N

. If N >> Nd, then f ≈ 1. If there are many resonance decays, or if the

multiplicity is very low, this may have a substantial effect.

It is important to note that while the presence of resonance decays will shift the value of

〈pt〉, it is the fluctuations of 〈pt〉 which are being studied here. What is of actual interest

is how fluctuations in resonance decays will results in fluctuations of 〈pt〉. To quantify this

effect, the number of resonance decays and the scale of their fluctuations would have to be

determined. Both of these properties will vary with energy and centrality. To estimate the

effect, we can say 〈pt〉 = 〈pt〉o F , then the fluctuations of 〈pt〉 will be,

δ 〈pt〉 = 〈pt〉
√(

δ 〈pt〉o
〈pt〉o

)2
+

(
δF

F

)2
, (4.5)

where 〈pt〉o is the average transverse momentum of the system before the decay, F is the

product of f for each resonance decay, and δx is the fluctuation of quantity x.
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To study the effect of resonance decays on the analyses presented in this dissertation, one

could identify the prominent resonances, then suppress the daughter particles by cutting out

all pairs of particles of the correct species with qinv
3 corresponding the mass of the mother

particle. Correlations would be induced by the cut which would need to be corrected for

with mixed events. This was not done in this analysis because no particle identification was

performed.

4.6.4 Changing Chemistry

Variations in the chemistry of events (the ratios of various particle species) could have an

effect on the observed non-statistical fluctuations of 〈pt〉. In the case of a perfectly thermal

QGP system, different particle species will have different momenta because of their masses.

Particle ratios are determined by the collision energy and temperature of the system, but will

have statistical variation. Even in the case of constant temperature, variations in particle

ratios will result in additional fluctuations of 〈pt〉.

This effect could be investigated by performing the analyses using identified particles. Per-

forming the analysis on only one particle species at a time should mitigate the effects of

changing chemistry. Doing pt analyses on identified particles has the additional complica-

tion that particle identification is done by cutting on pt and p. Truncating the underlying

pt distributions will affect the fluctuations of 〈pt〉, this effect would be non-trivial and have

to be investigated.

3Center of mass invariant momentum difference.
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4.6.5 Temperature Fluctuations

As event-by-event analyses became practical, one of the original motivations for studying 〈pt〉

fluctuations was to measure temperature fluctuations and the specific heat of the produced

systems. The specific heat, CV , would provide insight into the equation of state of the

system and could be sensitive to the order of the phase transition. In the case of a first

order phase transition, the specific heat will be much larger than in a smooth crossover. In

a smooth cross-over fluctuations in the energy of the system will result in a fluctuation in

the temperature, but in a first order phase transition fluctuations in energy may go into the

latent heat of the phase transition and the temperature may fluctuate much less.

The motivation for using 〈pt〉 fluctuations to measure specific heat is as follows. In a thermal

system the 〈pt〉 of a system should be related to the temperature T by some function 〈pt〉 =

F (〈T 〉). Likewise 〈〈pt〉〉 = F (〈T 〉). Assuming the temperature fluctuations are Gaussian,

arguments from the theory of error propagation give [40],

σ〈pt〉,dynamic =
∣∣F ′ (〈T 〉)∣∣σT,dynamic, (4.6)

where F ′ (〈T 〉) is the derivative of F (〈T 〉). We can then write,

σ〈pt〉,dynamic

〈〈pt〉〉 =

∣∣∣∣F ′ (〈T 〉)
F (〈T 〉)

∣∣∣∣ σT,dynamic
〈T 〉 . (4.7)

Treating the system as an ideal gas, there are two limiting cases for the pt spectra, a nonrel-

ativistic ideal gas where 〈〈pt〉〉 ∝
√〈T 〉 and an ultrarelativistic ideal gas where 〈〈pt〉〉 ∝ 〈T 〉.

In reality the system will be somewhere between these limiting cases. It then follows
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that,

σ〈pt〉,dynamic

〈〈pt〉〉 = ε
σT,dynamic

〈T 〉 , (4.8)

where ε is some value between 0.5 and 1. Noting that CV =

(
〈T 〉

σT,dynamic

)2
, we can say,

(
σ〈pt〉,dynamic

〈〈pt〉〉
)2

=
ε2

CV
. (4.9)

It is interesting to note that there will be statistical fluctuations of the temperature. Fluctu-

ations in the temperature will go like
σT,stat
〈T 〉 ≈ 1√〈N〉 . Where 〈N〉 is the mean multiplicity of

the events. A ballpark value of 〈N〉 ≈ 500, which gives
σT,stat
〈T 〉 = 0.045. The statistical fluc-

tuations of temperature come from the limited number of particles, which is also the source

of the statistical fluctuations of 〈pt〉, so it is unnecessary to make an additional correction

explicitly for statistical temperature fluctuations.

4.6.6 Correlation Length

One of the most exciting possible sources of dynamic fluctuations of 〈pt〉 is the QCD critical

point (see Section 1.2.2).

In Ref. [41], M. Stephanov works out a simplified theory of pions coupling to a field σ of

mass m̃, with interactions given by the Lagrangian

Lσππ = 2Gσπ+π− (4.10)
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with coupling G. He calls this model the Linear Sigma Model. He defines a universal

fluctuation correlator
〈
Δnα

p , Δn
β
k

〉
which is a two particle correlation between occupation

numbers. The subscripts and superscripts denote that nα
p is the occupation number of a

quantum state defined by property α with value p. The value of nα
p will vary event to event,

and can be averaged over many events to
〈
nα

p

〉
. Then Δnα

p = nα
p − 〈

nα
p

〉
. He demonstrates

that the G2 order correction to the universal fluctuation correlator can be shown, to first

order near the critical point to be,

〈
Δnα

p , Δn
β
k

〉
G2 ∝ 1

m̃2 . (4.11)

This is notable because m̃ is related to the correlation length, ξ = m̃−1 (see also Ref. [42]).

Near the critical point, when ξ diverges, the universal fluctuation correlator should also

diverge.

In Ref. [41] it is shown that the variance of 〈pt〉 is related to
〈
Δni, Δnj

〉
(the absence

of superscripts is because the occupation numbers are implied to be of momentum states)

by,

σ2
〈pt〉 =

1

〈N〉2
∑

i

∑
j

〈
Δni, Δnj

〉 (
pt,i − 〈pt〉

) (
pt,j − 〈pt〉

)
. (4.12)

However, the theoretical derivation assumes that there are no statistical fluctuations,

σ2
〈pt〉,statistical =

〈
σ2
pt
N

〉
= 0 and so σ2

〈pt〉 = σ2
〈pt〉,dynamic (from Eq. 4.2). The physical

quantity of interest is then σ2
〈pt〉,dynamic and not σ2

〈pt〉.

In another paper on the Linear Sigma Model, Stephanov also relates the third moment of
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the 〈pt〉 spectra to a generalized three particle correlator [42]
〈
Δni, Δnj , Δnk

〉
by,

〈
(Δ 〈pt〉)3

〉
=

1

〈N〉3
∑

i

∑
j

∑
k

〈
Δni, Δnj , Δnk

〉 (
pt,i − 〈pt〉

) (
pt,j − 〈pt〉

) (
pt,k − 〈pt〉

)
.

(4.13)

The three particle correlator is related to the correlation length by
〈
Δni, Δnj , Δnk

〉 ∝

ξ6. As with the two particle correlator, the physical quantity of interest will actually be〈
(Δ 〈pt〉)3

〉
dynamic

and not
〈
(Δ 〈pt〉)3

〉
because of non-physical statistical fluctuations.

These general multi-particle correlators are related to the moments of the zero-momentum

mode of sigma field, σ0 ≡ ∫
d4σ (x) /V . In Stephanov’s Linear Sigma Model, the relationship

between the moments of this sigma field and the correlation length is given by [42],

κ2 =
〈
σ2

0
〉

= T
V ξ2

κ3 =
〈
σ3

0
〉

=
2λ3T

V ξ6

κ4 =
〈
σ4

0
〉
c =

〈
σ4

0
〉− 〈

σ2
0
〉2

= 6T
V

[
2 (λ3ξ)

2 − λ4

]
ξ8

(4.14)

Like in Eqs. 4.12 and 4.13, we can relate the moments of the sigma field to dynamic moments

of the 〈pt〉 distribution. However, we cannot expect the dynamic moments of the 〈pt〉 spectra

to necessarily follow the fluctuations of the sigma field because there are many effects which

can modify these fluctuations, and there are physical processes which will manifest in the

dynamic correlations, but are not related to thermodynamics of the system. Also, the system

has continued to interact for some time after passing near the critical point.

The critical contribution to the higher moments of the 〈pt〉 spectra have not been calculated,

and will depend upon momentum distributions, quantum momentum states, momentum
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efficiencies, and potentially other factors. There are other analyses, outside of the scope of

this dissertation which attempt to detect critical opalescence through the moments of the

multiplicity distributions. For these analyses the relationship between the correlation length

and the moments of the multiplicity distributions has been estimated to be [43, 44, 45],

κ2 ∝ ξ2,

κ3 ∝ ξ9/2,

κ4 ∝ ξ7,

Sσ ∝ ξ5/2,

Kσ2 ∝ ξ5,

(4.15)

where S is the ‘skewness’4 and K is the kurtosis5. A similar relationship is expected for the

higher moments of 〈pt〉.

4.7 Two-Particle pt Correlations, 〈Δpt,i, Δpt,j〉

The correlation function which is used in this dissertation is the two-particle relative trans-

verse momentum correlator,
〈
Δpt,i, Δpt,j

〉
. This correlator is equivalent the dynamic com-

ponent of the variance of 〈pt〉, σ2
〈pt〉,dynamic. By construction it will be 0 for mixed events

and statistically sampled events. The mathematical definition of this correlator is given in

Section 4.7.1. It is also equivalent to the difference of the variance of the 〈pt〉 distribution

and the average variance of the event-by-event pt distribution scaled by average multiplicity.

4S =
μ3
σ3 =

κ3
κ
3/2
2

5K =
μ4
σ4 − 3 =

κ4
κ2
2
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This can be inferred from Eq. 4.2, but is also rigorously demonstrated in Appendix . The

experimental analysis is presented in Chapters 5 and 6.

4.7.1 Mathematical Construction

The two-particle transverse momentum correlation observable,
〈
Δpt,i, Δpt,j

〉
, is constructed

as follows. For each event an average pt is calculated by averaging the pt values of each track

within the analysis acceptance:

〈pt〉k =

∑Nk
i=1 pt,i
Nk

(4.16)

The values of 〈pt〉k are then averaged over multiple events. This event averaged pt is done

as a function of multiplicity (refMult) because the event average pt is multiplicity dependent

as has already been observed in other analyses [46].

〈〈pt〉〉 =

∑Nevent
k=1 〈pt〉k
Nevent

(4.17)

At high multiplicities the number of events available decreases to zero, and the calculated

value of 〈〈pt〉〉 fluctuates due to limited statistics. To compensate for this statistical variation,

〈〈pt〉〉 as a function of multiplicity is fit with a linear form at large multiplicites and the fitted

values are used in further steps of the calculation. Examples of this fitting can be seen in

Figures 4.3 and 4.4.

For each event the correlator is defined as a double sum, which is also equivalent to a single

sum over all pairs of particles. The sum is taken over the product of the deviation of pt for

65



Figure 4.3: 〈〈pt〉〉 (refMult) for 7.7 GeV. The raw distribution is plotted in blue points, and
the smoothed 〈〈pt〉〉 values in green. The error bands are statistical errors. The errors above
refMult ≈ 250 grow very large due to low statistics.
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Figure 4.4: 〈〈pt〉〉 (refMult) for 200 GeV. The raw distribution is plotted in blue points, and
the smoothed 〈〈pt〉〉 values in green. The error bands are statistical errors. The errors above
refMult ≈ 600 grow very large due to low statistics.
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all pairs of particles in each event.

Ck =

Nk∑
i=1

Nk∑
j=1,j �=i

(
pt,i − 〈〈pt〉〉

) (
pt,j − 〈〈pt〉〉

)
(4.18)

The correlator is divided by the total number of pairs of particles in the event, and then

averaged over all events.

〈
Δpt,i, Δpt,j

〉
=

1

Nevents

Nevents∑
k=1

Ck

Nk (Nk − 1)
(4.19)

Just as with 〈〈pt〉〉, this average is done as a function of reference multiplicity. The values

of
〈
Δpt,i, Δpt,j

〉
are averaged over each centrality bin (weighted by the number of events in

each multiplicity bin).

4.7.2 Scalings

The purpose of the two-particle correlator is to isolate critical behavior. However, the two-

particle correlator is also sensitive to physical effects not related to critical behavior. In order

to remove these effects, and isolate critical behavior, various scalings are used. Scalings can

also be used to attempt to equate results from different systems, for example: p+p, Cu+Cu,

and Au+Au. If correlations between different systems could be shown to be equivalent using

some scaling related to system parameters, it may be indicative of some underlying behavior

which is constant between the differing systems.
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4.7.2.1 By 〈〈pt〉〉−1

The correlation observable may have an dependence arising from the energy dependence

of 〈〈pt〉〉, so scaling with 〈〈pt〉〉 should in principle remove it. The correlation observable〈
Δpt,i, Δpt,j

〉
has units of momentum squared ((GeV/c)2), while 〈〈pt〉〉 has units of mo-

mentum (GeV/c), so when scaling with 〈〈pt〉〉 we must either square 〈〈pt〉〉 or take the

square root of the correlation observable. In addition to addressing possible energy depen-

dence, this scaling provides two other benefits, first when scaled as
√〈

Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉

our observable is equivalent to the CERES observable Σpt [36]. Second, the efficiency de-

pendence of
√〈

Δpt,i, Δpt,j
〉

is the same as that of 〈〈pt〉〉 (see Section 6.2) so the scaled

observable is independent of efficiency.

The strongest motivation for so scaling with 〈〈pt〉〉 comes from Section 4.6.5. Noting that〈
Δpt,i, Δpt,j

〉
= σ2

〈pt〉,dynamic, from Equations 4.8 and 4.9 we can write,

√〈
Δpt,i, Δpt,j

〉
〈〈pt〉〉 = ε

σT,dynamic
〈T 〉 =

ε√
CV

, (4.20)

where, as in Equations 4.8 and 4.9, ε is some number between 0.5 and 1 coming from the

relationship between 〈〈pt〉〉 and 〈T 〉, and CV is the specific heat of the system.

4.7.2.2 By Multiplicity

There are two independent motivations for scaling with variants of multiplicity. The first

motivation is to explore the possibility that heavy-ion collisions behave like a large number

of nucleon-nucleon collisions. If that were the case, then one would expect the correlations to

scale with the number of individual nucleon-nucleon collisions (Ncoll). The value of Ncoll is
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not experimentally accessible, but could be estimated using Glauber simulations; it should,

in principle, be related to to the collision energy and the detected multiplicity. The Ncoll

scaling is not presented in this dissertation.

The other motivation for scaling with multiplicity comes from the fact that
〈
Δpt,i, Δpt,j

〉
is

calculated as an average over all pairs. As the number of particles in an event (N) increases,

the number of pairs increases like N2, so the summation ‘dilutes’ the correlations. This

dilution goes as 1/N , so it can be addressed by scaling with the number of particles used in

the double summation.

4.7.2.3 By 〈〈pt〉〉−1 and Multiplicity

The arguments presented for each scaling are both valid, so in addition to presenting them

individually, results will be presented of the correlation observable scaled by both 〈〈pt〉〉−1

and N .

4.8 Higher Moments of 〈pt〉

The moments of distributions corresponding to fluctuation observables are potential mea-

sures of critical behavior because they relate to the correlation length of the medium. The

mathematical description of the higher moments is presented in Section 4.8.1. Baseline

expectations of statistical behavior are presented in Section 4.8.2. The corresponding exper-

imental analysis is presented in Chapters 7 and 8.
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4.8.1 Mathematical Construction

All of the moments of the 〈pt〉 distributions have the same form. The moment of order n is

defined as,

μn =

∑Nevents
i=1 (〈pt〉i − 〈〈pt〉〉)n

Nevents
. (4.21)

The first moment is more commonly known as the mean, and the second moment as the vari-

ance. The moments of the distribution are also related to the cumulants of the distribution.

The first six cumulants are related to the moments by,

κ1 = μ1,

κ2 = μ2,

κ3 = μ3,

κ4 = μ4 − 3μ2
2,

κ5 = μ5 − 10μ2μ3,

κ6 = μ6 − 15μ2μ4 − 10μ2
3 + 30μ3

2.

(4.22)

In addition to being expressed as cumulants, the higher moments are sometimes expressed

as classical named properties of distributions: variance (σ2), skewness (S), and kurtosis (K),

which are related to the moments and cumulants by,
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σ2 = μ2 = κ2,

S =
μ3
σ3 =

κ3
κ
3/2
2

,

K =
μ4
σ4 − 3 =

κ4
κ2
2
.

(4.23)

These are also expressed as moments products, which can be written in terms of ratios of

the cumulants,

Sσ =
κ3
κ2

,

Kσ2 =
κ4
κ2

.

(4.24)

Each moment and cumulant is calculated individually for each multiplicity bin. This is

done so that the variation in the value of 〈〈pt〉〉 with multiplicity does not skew the other

moments. After all of the calculations are done for each multiplicity, the centrality bin values

are calculated by taking an average over all of the multiplicity bins in each centrality bin,

weighting each multiplicity bin by the number of events in that bin.

Unlike with the two-particle correlator analysis, the value of 〈〈pt〉〉 is not smoothed at large

multiplicity values with a linear fit.

4.8.2 Baselines

The 〈pt〉 distributions are largely statistical, and the effects of early-state fluctuations are

expected to be very small (a few % change in the variance, for example). Additionally, the

STAR detector subsystems have non-trivial efficiencies which depend on pt, among other

things. These efficiencies do affect the 〈pt〉 distributions. As such, it is instructive to have a
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statistical baseline to compare the experimental results with. Also, the moments products

which are related to the correlation length are expected to diverge near the critical point, but

the scale of their divergence is uncertain and moments products themselves may vary due

to analysis methods and experimental effects. By comparing the moments with an expected

baseline, critical behavior can be highlighted. Lastly, as discussed in Section 4.3, there are

both dynamic and statistical contributions to 〈pt〉 fluctuations. Having a purely statistical

baseline allows us to extract the dynamic component of the 〈pt〉 fluctuations. Here I present

two baselines which have been considered in the higher moments analysis presented in this

dissertation.

4.8.2.1 Gamma Distributions

The 〈pt〉 distributions has been observed in many experiments to be well described by a

gamma distributions [47, 36, 48]. The gamma distribution has the form,

f (y) = fΓ (y, α, β) =
β

Γ (α)
(βy)α−1 e−βy, (4.25)

with parameters α and β, and Γ (x) is the gamma function. The parameters of the gamma

distribution are related to the mean and variance of the distribution,

α =
〈〈pt〉〉2
σ2
〈pt〉

,

β =
σ2
〈pt〉

〈〈pt〉〉 .
(4.26)

The first four moments of the gamma distribution are given in terms of α and β by,
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μ1 = αβ = 〈〈pt〉〉 ,

μ2 = αβ2 = σ2
〈pt〉,

μ3 = 2αβ3 =
σ4
〈pt〉

〈〈pt〉〉 ,

μ4 = 3α (2 + α) β4.

(4.27)

The gamma distribution comes from the underlying pt distributions being approximately

exponential. If the underlying distribution is perfectly exponential, e−βy, then physically

the α parameter is the number of samples taken from the underlying distribution. When

α = 1 the underlying distribution is reproduced. When α becomes large, the distribution

approaches a normal distribution, as is expected from the central limit theorem. The gamma

behavior of the 〈pt〉 distribution is a consequence of statistics and the thermal character of

the pt distribution.

4.8.2.2 Statistical Baseline

While to first order the 〈pt〉 distributions are gamma distributions, they may deviate due to

the pt dependent track detection efficiency of the detector (see Figure 4.6). Additionally, the

underlying pt distributions are truncated, and are not perfectly exponential. To demonstrate

the effect of pt dependent track detection efficiency a toy model was constructed. Figure 4.5

shows the result of this toy model. In this toy model, every event has a multiplicity taken

from a gaussian distribution with μ = 100 and σ = 10, and 〈pt〉 sampled from a Gaussian

distribution with μ = 1 and σ = 0.25. The track pt distribution was also assumed to be

gaussian with it’s mean given by the sampling from the 〈pt〉 distribution and σ = 1. As each

track was drawn, it’s value was compared to a simulated efficiency step at pt = 1.25. If the

74



Figure 4.5: This is a simulated result showing the effects of pt track cuts on the 〈pt〉 dis-
tribution. The blue histogram is the true 〈pt〉 distribution, while the green histogram the
result of running each track from each event through a simulated efficiency.

value of the track was less than 1.25, the track was always kept (100% efficiency), if the track

had a value of greater than 1.25, the track was kept only 75% of the time (75% efficiency).

After this efficiency simulation, the 〈pt〉 of the event was recalculated, giving the efficiency

simulated 〈pt〉 distribution. In reality the efficiency usually varies smoothly with pt. The

effect of this efficiency step is that events with a mean at or above the step have more tracks

in the lower efficiency region. Events far below the step are shifted only marginally, but

events at or above the step are shifted lower with a higher probability, resulting in a skewing

of the 〈pt〉 distribution.
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This effect would be pronounced if the moments analysis were done with identified particle

species, particularly if particle identification was done using a combination of TPC and

TOF. Because the TPC and TOF have different momentum ranges, the PID efficiency as a

function of pt changes and is very sensitive to the PID method used. The moment analysis

for identified particles is not presented in this dissertation, but pt dependent track detection

efficiency may still skew the 〈pt〉 distributions.

Experimentally, the pt dependent track detection efficiency of the detector is determined by

using ‘embedding’. Embedding consists of taking real physics events, adding artificial tracks

(embedding them into the event), running them through a full simulation of the detector,

performing track reconstruction, and then calculating the fraction of embedded events which

have survived through reconstruction.

To address concerns about pt dependent track detection efficiency, statistically sampled

events were used as a baseline (see Section 4.4). The pt dependent track detection effi-

ciency will change the underlying pt distribution, so the effect should be reproduced in the

statistically sampled events.
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Figure 4.6: Efficiency as a function of pt for 62.4 GeV in the 0-5% centrality bin as determined
by embedding. The efficiency was done independently for each particle species.
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Chapter 5

Results of the pt Correlation

Analysis

5.1 Behavior of 〈pt〉

For all seven energies, the 〈pt〉 spectra for each centrality bin was observed to be well de-

scribed by gamma distributions, particularly in the central bins, as has been found in previous

analyses [36]. The 〈pt〉 spectra with gamma distributions for the 0-5% centrality bin can

be seen in Figure 5.1, and the corresponding parameter values for the gamma distributions

are listed in table 5.1. Note that the distributions are not fits, they are simply distributions

with the same mean and variance as the data, and both the data and the distributions have

been normalized to 1.

The mean value of the 〈pt〉 gamma distributions are equivalent to 〈〈pt〉〉 for that centrality

bin. The values of 〈〈pt〉〉 for all centralities, plotted versus
√

sNN, is shown in Figure 5.2.

Above
√

sNN = 19.6 GeV, 〈〈pt〉〉 are observed to increase smoothly with energy for all

centrality bins. For all but the two most peripheral centrality bins, the values of 〈〈pt〉〉 is

observed to increase with decreasing energy below
√

sNN = 19.6 GeV. This is due to changes

in the particle ratios. Below 19.6 GeV the pion to proton ratio decreases with energy. For
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Data
Gamma

7.7 GeV 11.5 GeV

19.6 GeV 27 GeV

39 GeV 62.4 GeV

200 GeV

Figure 5.1: 〈pt〉 distributions with gamma distributions. These spectra have been normalized
so that they integrate to one. No fitting was performed, the gamma distributions simply
have the same mean and variance as the data.
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Energy α β μ σ
7.7 GeV 789.5 ± 0.31 0.00070137 ± 2.3e-7 0.55371 ± 7.0e-5 0.0197067 ± 2.9e-6
11.5 GeV 930.9 ± 0.26 0.00058381 ± 1.3e-7 0.54346 ± 5.0e-5 0.0178123 ± 1.9e-6
19.6 GeV 1089.1 ± 0.09 0.00049720 ± 2.8e-8 0.54148 ± 1.7e-5 0.0164082 ± 3.9e-7
27 GeV 1166.3 ± 0.05 0.00046754 ± 1.4e-8 0.54528 ± 1.0e-5 0.0159670 ± 1.9e-7
39 GeV 1241.8 ± 0.12 0.00044513 ± 3.4e-8 0.55278 ± 2.0e-5 0.0156863 ± 5.2e-7

62.4 GeV 1271.5 ± 0.06 0.00044472 ± 1.6e-8 0.56546 ± 1.2e-5 0.0158578 ± 2.2e-7
200 GeV 1465.3 ± 0.08 0.00040798 ± 1.6e-8 0.59781 ± 1.3e-5 0.0156173 ± 2.6e-7

Table 5.1: The parameters of the gamma distributions fit to the 〈pt〉 spectra for the 0-5%
centrality bin. The gamma distribution is fully defined by two parameters, either α and β
or μ and σ; both pairs of values are listed here for convenience.

individual particle species 〈〈pt〉〉 increases smoothly and continuously with
√

sNN. We expect

〈〈pt〉〉 to increase with energy because it is related to the temperature of the system. Different

particle species have different values of 〈〈pt〉〉 due to their different masses. Protons have

〈〈pt〉〉 values approximately 3 times that for pions. The decrease in the number of pions

versus the number of protons at the lower energies is why we observe 〈〈pt〉〉 to decrease with

energy for
√

sNN < 19.6 GeV. This trend is reproduced by UrQMD (see Figure 6.5 and Sec

3.8).

5.2 Unscaled Correlations

The correlation observable
〈
Δpt,i, Δpt,j

〉
versus

√
sNN for all incident energies and centrali-

ties is shown in Figure 5.3. It increases smoothly with both energy and decreasing centrality.

The increase with centrality can be explained, in part, by the decrease in multiplicity: in

central collisions where the observed multiplicity N increases, the number of pairs of parti-

cles goes like N2. This will result in a ‘dilution’ of the correlations. Also, 〈pt〉 varies with

centrality, which will effect that scale of
〈
Δpt,i, Δpt,j

〉
.
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Figure 5.2: 〈〈pt〉〉 vs
√

sNN for all seven energies and eight centrality bins. The error bars
are statistical. If the particle ratios are constant, 〈〈pt〉〉 will vary with the temperature of
the system and should increase with energy. The decrease with energy up to

√
sNN = 19.6

GeV is due to the decrease in the number of pions relative to the number of protons.

81



Figure 5.3:
〈
Δpt,i, Δpt,j

〉
vs

√
sNN for all seven energies and eight centrality bins. The error

bars are statistical errors, and the error bands are systematic errors.
〈
Δpt,i, Δpt,j

〉
is related

to the dynamic correlations of 〈pt〉.

There could be any number of reasons why
〈
Δpt,i, Δpt,j

〉
is observed to increase with collision

energy. The increase could be due to the increase in the number of jets, increase in the

number of resonance decays, or other phenomena. As with the centrally dependence, there

will be some effect due to variations in multiplicity and 〈pt〉. The dramatic decrease below

√
sNN = 19.6 GeV could be due to a change in the phase transition.
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5.3 Correlations Scaled with 〈〈pt〉〉−1

Figure 5.4 shows the correlation observable scaled with average transverse momentum,√〈
Δpt,i, Δpt,j

〉
/ 〈〈pt〉〉 as a function of energy for all eight centrality bins. The scaled

observable,
√〈

Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉, still increases with both centrality and energy, but be-

cause 〈〈pt〉〉 also increases with energy above 19.6 GeV, the energy dependence weakens

above 19.6 GeV.

The centrality dependence is largely a consequence of the ‘dilution’ effect discussed above,

and can be addressed by scaling with the multiplicity used in the calculation of
〈
Δpt,i, Δpt,j

〉
.

As discussed above, source of the energy dependence is ambiguous, but may be due to an

increase in jets or resonance decays. There may also be a ‘dilution’ effect due to changing

multiplicity with collision energy.

This version of the scaled observable is equivalent to the correlation observable Σpt which was

studied by CERES [49]. Comparisons with their observations are shown below in Section

5.6. This scaling is also of interest because it may be related to the specific heat of the

system, CV , as discussed in Section 4.6.5. Rewriting Eq 4.9 for CV ,

CV ∝ 〈〈pt〉〉√〈
Δpt,i, Δpt,j

〉 , (5.1)

we find that CV is proportional to the inverse of the current scaling. The statistical error

bars at 7.7 GeV are large, but CV appears to decrease with energy up to 19.6 GeV then

remains approximately constant. This increase in 〈〈pt〉〉 /
√〈

Δpt,i, Δpt,j
〉

with decreasing

energy at 11.5 and 7.7 GeV could indicate a change to a first order phase transition although
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Figure 5.4:
√〈

Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉 vs

√
sNN for all seven energies and eight centrality bins.

The error bars are statistical errors, and the error bands are systematic errors.
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Figure 5.5: 〈N〉 〈Δpt,i, Δpt,j
〉

vs
√

sNN for all seven energies and eight centrality bins. The
error bars are statistical errors. The solid lines are shown to guide the eye.

the errors are large at the lower energies.

5.4 Correlations Scaled with Multiplicity

Figure 5.5 is the correlation observable scaled with the multiplicity of tracks used in the

calculation, 〈N〉 〈Δpt,i, Δpt,j
〉
, as a function of energy for eight centrality bins. Figure 5.6 is

the same scaled observable, 〈N〉 〈Δpt,i, Δpt,j
〉
, as a function of Npart for eight centrality bins.

When comparing with
〈
Δpt,i, Δpt,j

〉
(Figure 5.3) it can be noted that 〈N〉 〈Δpt,i, Δpt,j

〉
has

very little centrality dependence.
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7.7 GeV
11.5 GeV
19.6 GeV

27 GeV
39 GeV
62.4 GeV

200 GeV

Figure 5.6: 〈N〉 〈Δpt,i, Δpt,j
〉

vs Npart for all seven energies and eight centrality bins. The
error bars are statistical errors. The solid lines are shown to guide the eye.
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5.5 Correlations Scaled with Multiplicity and 〈〈pt〉〉−1

Figures 5.7 and 5.8 show the correlation observable scaled with both multiplicity and average

transverse momentum,
√

〈N〉 〈Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉. Figure 5.7 shows√

〈N〉 〈Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉 as a function of Npart for the seven energies. Figure 5.8 shows√

〈N〉 〈Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉 as a function of energy for the eight centrality bins.

Figure 5.7 shows that this scaling has, to a large degree, removed the centrality depen-

dence of the correlation observable. The increase in the correlation observable with Npart

for very peripheral bins (bins with small Npart values) has been proposed as a sign of ther-

malization [50]. This behavior may also arise from changes in the underlying system; very

peripheral collisions are better approximated as N+N (nucleon-nucleon) collisions than A+A

(nuclei-nuclei) collisions. This scaling seems to plateau and exhibit only a weak centrality de-

pendence in the central and mid-peripheral bins, decreasing with increasing centrality. The

weak centrality dependence in the central and mid-peripheral bins may be due to centrality

dependent efficiency. The efficiency in central bins is slightly lower than the centrality in

peripheral bins due to the larger number of tracks in the detector.

Figure 5.8 shows the same scaling,
√
〈N〉 〈Δpt,i, Δpt,j

〉
/ 〈〈pt〉〉, as a function of energy for

the eight centrality bins. This scaling appears to increase monotonically with energy, and the

centrality dependence is significantly weaker than the energy dependence. The dependence

on energy but not on centrality suggests that
√

〈N〉 〈Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉 is not dependent

upon thermodynamics, but on the hard interactions of the initial system before thermal-

ization and QGP formation. In mid-peripheral collisions, 〈〈pt〉〉 is smaller, indicating that

the temperature is lower. The absence of centrality dependence suggests that either the dy-
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7.7 GeV
11.5 GeV
19.6 GeV

27 GeV
39 GeV
62.4 GeV

200 GeV

Figure 5.7:
√

〈N〉 〈Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉 vs Npart for all seven energies and eight centrality

bins. The error bars are statistical. The solid lines are shown to guide the eye.
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Figure 5.8:
√
〈N〉 〈Δpt,i, Δpt,j

〉
/ 〈〈pt〉〉 vs

√
sNN for all seven energies and eight centrality

bins. The error bars are statistical.

namic correlations do not depend on temperature (and only depend upon collision energy),

or this scaling has suppressed the temperature dependence while magnifying the energy

dependence.

5.6 Comparison with Published Results

Figure 5.9 shows a comparison of the results of this analysis for the scaled observable√〈
Δpt,i, Δpt,j

〉
/ 〈〈pt〉〉 in the 0-5% centrality bin with other analyses. The green points
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Current Analysis
CERES, Nucl. Phys. A727, 97 (2003) [49]
ALICE, J. Phys .G 38, 124095 (2011) [51]
STAR, Phys. Rev. C 72, 044902 (2005) [36]
UrQMD
Recalculated Run 4

Figure 5.9:
√〈

Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉 vs

√
sNN for the 0-5% centrality bin for the present

analysis and several other analyses. The error bars are statistical errors. The error bands
are the systematic error of the STAR analyses.

are from the CERES experiment, which was a fixed target Pb beam onto Au foil at 8.7,

12.3, and 17.3 GeV [49]. The red triangle is a preliminary point from the ALICE collabo-

ration from Pb+Pb collisions at 2760 [51]. The cyan stars are the 2005 STAR results from

Run 4 [36]. The magenta line represents UrQMD model calculations (Section 3.8). Lastly,

the yellow diamonds correspond to values obtained from the present analysis applied to the

data from the 2005 STAR analyses.

The two highest energy points from the CERES study are in good agreement with the present

analysis, however the lowest energy point, done at
√

sNN = 8.7 GeV, appears to be in strong
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disagreement with the present point at 7.7 GeV. This disagreement may be partially due

to the fiducial cuts used in the CERES analysis. During the run for that energy, they had

problems with the detector electronics, and were forced to apply a cut of 17π/24 < φ < 2π.

In the discussion of the systematic errors, they state that the effect of this cut was found to

be small [49], but no values are given. However, a STAR analysis done with Cu+Cu, which

investigated the effect of fiducial cuts, suggests that a φ cut of that size could increase the

value of
√〈

Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉 by approximately 10% [39]. A shift of 10% would not put

the analyses in agreement, but they would disagree less.

The comparison with ALICE is suggests that
√〈

Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉 may plateau, but with-

out additional data points the trend is inconclusive.

The results at 62.4 GeV and 200 GeV deviate slightly from the previous STAR results. In

order to test if this was an error in the previous analysis, the full analysis was rerun on two

subsets of the Run 4 data. The analysis code, and some aspects of the analysis procedure

have been improved since 2005, but the produced results are in agreement with the published

results. While this analysis suggests a stronger energy dependence than the 2005 analysis,

the error bars of the two analyses overlap when including estimates of systematic errors and

the results are in excellent agreement.

Taken as a whole, and noting that the CERES 8.7 GeV point had detector problems,√〈
Δpt,i, Δpt,j

〉
/ 〈〈pt〉〉 is observed to increase strongly with energy up to 19.6 GeV, and

then have much weaker energy dependence above 19.6 GeV. The ALICE point suggests that√〈
Δpt,i, Δpt,j

〉
/ 〈〈pt〉〉 may plateau. The strong decrease below 19.6 GeV may indicate a

change to a first order phase transition.
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Chapter 6

pt Correlation Analysis Checks

Many analysis checks have been performed to insure that the results are robust against small

changes in analysis cuts and detector efficiency. Studies have also been performed to check

for bin width effects, auto-correlations from the method of centrality definition, and to insure

no dependence on detector pile-up.

6.1 η Cut Dependence

The STAR detector has wide uniform acceptance about mid-rapidity, but previous exper-

iments to which we desire to make experimental comparisons have different, potentially

non-symmetric acceptances in rapidity [49]. The CERES experiment used a fixed target ge-

ometry, so both the width of the rapidity acceptance and the center of the rapidity window

shift with incident energy. A thorough study was performed to insure that the correlation

observable was robust to both small changes in the width of the rapidity window and it’s

symmetry about mid rapidity.

The full analysis was run for every center of mass energy for several symmetric (|η| < 1.0,

|η| < 0.5, |η| < 0.25, |η| < 0.1) and asymmetric (−1.0 < η < 0.0, 0.0 < η < 1.0) analysis

cuts. The results for
√〈

Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉 for two energies can be seen in Figures 6.1
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Figure 6.1: Comparisons of
√〈

Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉 calculated using different η cuts for 19.6

GeV. In all cases the η cut was symmetric about η = 0. Three centrality bins are shown:
0-5%, 20-30%, and 50-60%. The error bars are statistical.

and 6.2. Within errors, the value for all centrality bins is constant. In the case of tighter

η cuts, the values for each centrality bin are seen to shift up slightly, due to the decreased

multiplicity.

The effect of non-symmetric η cuts was studied for all energies with two different η cuts:

−1.0 < |η| < 0, and 0 < |η| < 1.0. The results for
√〈

Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉 for two energies

are shown in Figures 6.3 and 6.4 in addition to the analysis done for |η| < 0.5. In Figures

6.3 and 6.4 the absolute width of the η window is 1 in all cases, and it can be seen that the

values for each centrality bin are constant within errors for all three η cuts. In all cases the
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Figure 6.2: Comparisons of
√〈

Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉 calculated using different η cuts for 200

GeV. In all cases the η cut was symmetric about η = 0. Three centrality bins are shown:
0-5%, 20-30%, and 50-60%. The error bars are statistical.
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Figure 6.3: Comparisons of
√〈

Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉 calculated using different η cuts for 11.5

GeV. In all cases the η cut had an absolute width of 1. Three centrality bins are shown:
0-5%, 20-30%, and 50-60%. The error bars are statistical.

values of 〈〈pt〉〉 are identical. It has been concluded that the symmetry of the η cut has no

effect on the results of this analysis.

6.2 Detector Efficiency Dependence

To study the effect of detector efficiency on the correlation observable, two efficiency studies

were performed. The first investigated the effect of a uniform decrease in efficiency, and the

second a decrease of pt dependent efficiency.
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Figure 6.4: Comparisons of
√〈

Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉 calculated using different η cuts for 39

GeV. In all cases the η cut had an absolute width of 1. Three centrality bins are shown:
0-5%, 20-30%, and 50-60%. The error bars are statistical.
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The case of uniform inefficiency was simulated by randomly dropping tracks. The efficiency,

E, was defined as a percentage value 0.0 < E < 1.0, , and for each track a random number

was selected from the range α ∈ (0, 1]. If the random number was less that the chosen

efficiency, α < E, the track was accepted. Decreasing the efficiency uniformly had no

substantial effect on the results of the analysis, as expected. With decreasing efficiency, the

statistical errors grew due to limited statistics, and the correlation values fluctuated, but

they remained constant within errors.

Simulated events produced with UrQMD were used to study the effect of pt dependent

efficiency (Section 3.8). No detector reconstructions were used, but the same acceptance

cuts (η, pt, Vz, etc) were applied to the generated events. The pt dependent efficiency was

fit to embedding data and done separately for each particle species. The analysis was done

twice on the UrQMD events, once using all tracks within the acceptance window, and once

with the simulated pt dependent efficiency applied. A plot of the efficiency as a function of

pt was previously shown in Figure 4.6.

When simulating the efficiency, 〈〈pt〉〉 increased 1-2% because the efficiency is lower for lower

momentum tracks, which shifts the means of the distributions up. The magnitude of the

shift in 〈〈pt〉〉 was correlated with
√

sNN because it is related to the mean and width of

the pt spectra. In Figure 6.5 are shown 〈〈pt〉〉 as a function of
√

sNN with and without the

simulated pt dependent inefficiency.

With the simulated efficiency, the value of
〈
Δpt,i, Δpt,j

〉
shifted up 7-8%, again dependent

on energy. The increase in
〈
Δpt,i, Δpt,j

〉
is due to the decrease in multiplicity, which results

in less dilution of the correlations. Figure 6.6 shows
〈
Δpt,i, Δpt,j

〉
as a function of

√
sNN

with and without the simulated pt dependent inefficiency.
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UrQMD

Figure 6.5: The average momentum 〈〈pt〉〉 from UrQMD with (green squares) and without
(blue circles) momentum dependent inefficiency simulation for the most central centrality
bins plotted versus center of mass energy. The error bands in this plot are statistical.

When using the simulated efficiency and calculating the scaled observable
√〈

Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉,

the values fluctuated on the scale of 2-4%. The efficiency and multiplicity dependence of√〈
Δpt,i, Δpt,j

〉
/ 〈〈pt〉〉 is less than that of 〈〈pt〉〉 or

〈
Δpt,i, Δpt,j

〉
because they have the

same efficiency dependence, that cancels when scaling.
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UrQMD

Figure 6.6: The correlation observable
〈
Δpt,i, Δpt,j

〉
from UrQMD with (green squares)

and without (blue circles) momentum dependent inefficiency simulation for the most cen-
tral centrality bins plotted versus center of mass energy. The error bands in this plot are
statistical.
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UrQMD

Figure 6.7: The scaled correlation observable
√〈

Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉 from UrQMD with

(green squares) and without (blue circles) momentum dependent inefficiency simulation for
the most central centrality bins plotted versus center of mass energy. The error bands in
this plot are statistical.
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6.3 Bin Width Study

Some analyses have been shown to be sensitive to the width of the centrality bins used, this is

commonly referred to as a bin-width effect. Having defined both 〈〈pt〉〉 and
〈
Δpt,i, Δpt,j

〉
as

functions of multiplicity, it should be apparent that this analysis is not sensitive to bin-width

effects. The correlation observable, given as a function of multiplicity, is equivalent to the

finest possible binning. In order to demonstrate this insensitivity to binning, the analysis

was performed also with a uniform centrality binning of 2.5% wide bins in addition to the

standard centrality bins. The results showed no indications of bin-width effects.

6.4 Auto-correlations Study

Artificial correlations can be induced by using the same multiplicity value to define collision

centrality and in the calculation of the observables. For these cases alternative centrality

definitions have been proposed to be used in defining the system centrality, so as to not

induce auto-correlations.

This analysis was checked for auto-correlations by performing the full analysis for every

energy with the standard reference multiplicity (refMult) and with an alternative reference

multiplicity (refMult2). RefMult2 is defined as the number of tracks seen in the detector in

the region 0.5 < |η| < 1.0, and then the analysis is performed in the region |η| < 0.5. This is

done so that the tracks used to define the reference multiplicity are not the same track used

in the analysis of pt fluctuations. The comparisons shown between refMult and refMult2 are

done with the analysis cut of |η| < 0.5.
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Figure 6.8:
〈
Δpt,i, Δpt,j

〉
as calculated using refMult and refMult2 for 19.6 GeV for the

central 8 centrality bins plotted by Npart. The error bars are statistical.

Both refMult and refMult2 have standardized STAR centrality cuts and multiplicity cor-

rections to address minor dependences on Vz and coincidence rate as discussed in Section

3.5. The official STAR refMult and refMult2 centrality cuts were used when checking for

auto-correlations.

The results for refMult and refMult2 were in exact agreement for all energies with the

exception of peripheral bins. Two energies can be seen in Figures 6.8 and 6.9. Throughout

this analysis refMult has been used.
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Figure 6.9:
〈
Δpt,i, Δpt,j

〉
as calculated using refMult and refMult2 for 62.4 GeV for the

central 8 centrality bins plotted by Npart. The error bars are statistical.
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6.5 Short Range Correlations

An additional effect which was investigated was the effect of short range correlations on

the correlation observable. Short range correlations are correlations which arise from detec-

tor effects (two track resolution) and quantum effects (HBT, Bose-Einstein statistics, and

Coulomb effect), and are different from the bulk correlation effect which we are trying to

study. These have been investigated in previous experimental analyses [49, 36]. An estimate

of the effect of these short range correlations is presented here, but all other results in the

dissertation are not corrected for short range correlations.

An attempt to suppress short range correlations was made using a two step procedure.

First the correlation observable,
〈
Δpt,i, Δpt,j

〉
, was calculated for all pairs of particles with

qinv > 100 MeV/c, where qinv is the two particle invariant momentum difference. This

cutoff was used because it represents the range in qinv where HBT and Coulomb effect have

been shown to be negligible [49]. When this qinv pair cut is applied, it artificially induces

large anti-correlations. This artificial anti-correlation is addressed in the second step of the

procedure:
〈
Δpt,i, Δpt,j

〉
is calculated for mixed events with the same qinv cut, and the

value from the mixed events is subtracted from the real events.

Applying the qinv cut to the data does two things: it removes the short range correlations,

and it induces a purely statistical anti-correlation. Applying the qinv cut to mixed events

induces the same, purely statistical anti-correlation, and because there are no correlations (by

construction) this statistical anti-correlation is the only thing induced. So, by subtracting

the mixed events results from the real data, only the short range correlations should be

suppressed.
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Figure 6.10: sign
(〈

Δpt,i, Δpt,j
〉)√∣∣〈Δpt,i, Δpt,j

〉∣∣/ 〈〈pt〉〉 as a function of
√

sNN with and

without the short range correlation correction for the 0-5% centrality bin. The error bars

are statistical errors. This observable is equivalent to
√〈

Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉, but the sign

of
〈
Δpt,i, Δpt,j

〉
is moved outside of the square root.

Figure 6.10 shows sign
(〈

Δpt,i, Δpt,j
〉)√∣∣〈Δpt,i, Δpt,j

〉∣∣/ 〈〈pt〉〉 for 0-5% centrality bin as a

function of energy with and without short range correlations suppressed. After the correction,

the results are systematically higher for all energies above 11.5 GeV. This observable is

consistent with
√〈

Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉, but in the case of 7.7 GeV with SRC suppressed〈

Δpt,i, Δpt,j
〉

was negative, so the negative sign was moved outside of the square root. The

results corrected for SRC show less incident energy dependence that the uncorrected results,

but still increase with incident energy.
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6.6 Errors Calculations

Excluding systematic sources of error, the errors in this analysis come from two primary

source: statistical fluctuations, and variation of observables over the width of a centrality

bin.

The statistical error was estimated with a sub-event method. For each energy, at each step

of the calculation, the data set was divided into five sub-sets. The analysis was performed on

each sub-set of the data. The mean of the result from the five samples is then the calculated

result using the full data set, and the standard deviation of the five samples divided by
√

5

was taken as a measure of the statistical variation.

Observing 〈〈pt〉〉 and
〈
Δpt,i, Δpt,j

〉
as functions of multiplicity, one can see that they are

not uniform over the width of a centrality bin. Except for in central bins, this variation is

a larger contribution to the error than the statistical fluctuations. When averaging over a

centrality bin, both the mean and the variance are calculated weighted with the number of

events in each multiplicity bin taken from the multiplicity spectra. The variance from this

averaging is added in quadrature with the statistical variance of each bin weighed with the

number of events in that bin.

We estimate the systematic errors of 〈〈pt〉〉 by using studies of pt dependent efficiency (2.4%),

sensitivity to the η acceptance window (0.5%), and sensitivity to the lower value of the track

pt cut (1%). We estimate the total systematic error of 〈〈pt〉〉 to be 3%.

We estimate the systematic errors of the correlation observable
〈
Δpt,i, Δpt.j

〉
by using studies

of pt dependent efficiency (7.5%), sensitivity to the η acceptance window (9.2%). We estimate

the total systematic error of
〈
Δpt,i, Δpt.j

〉
to be 16.5%.
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We estimate the systematic errors of the scaled observable
√〈

Δpt,i, Δpt.j
〉
/ 〈〈pt〉〉 by using

studies of pt dependent efficiency (1.3%), sensitivity to the η acceptance window (∼4%),

and sensitivity to the lower value of the track pt cut (1%). We estimate the total systematic

error of
√〈

Δpt,i, Δpt.j
〉
/ 〈〈pt〉〉 to be 7%. The systematic error of

√〈
Δpt,i, Δpt.j

〉
/ 〈〈pt〉〉 is

smaller than that of
〈
Δpt,i, Δpt.j

〉
because efficiency effects cancel.
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Chapter 7

Results of the Higher Moments

Analysis

7.1 Higher Moments

Using Eq. 4.21, the moment of an arbitrary order of the 〈pt〉 spectra can be calculated. In

practice, we are limited to the first few moments by statistics. The first moment is determined

by the ‘center’ of the distribution, the second by it’s ‘width’, and higher moments are sensitive

to the behavior in the tails of the distribution. Higher moments are increasingly sensitive to

behavior further out in the tails, which are also the parts of the distribution with the fewest

statistics. The behavior of the cumulants is analogous to that of the moments since the nth

cumulant is some combination of the moments up to the nth.

7.1.1 Comparisons with Baselines

Here are presented the behavior of the first four moments for the data and the two baselines:

the gamma distribution baseline and the statistically sampled baseline.
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7.1.2 μ1 (κ1)

Figure 7.1 shows first moment of the 〈pt〉 spectra (the mean) for the 0-5% centrality bin as

a function of energy. In addition to the data, the two baselines are also plotted: the gamma

baseline, and the statistically sampled baseline. This figure is equivalent to Figure 5.2 except

for the addition of the baselines. We see the same behavior as before: 〈pt〉 increases with

energy above 19.6 GeV, but decreases with energy up to 19.6 GeV. This is a consequence of

the changing particle ratios, specifically the changing pion to proton ratio as pion production

decreases. For identified particles, 〈pt〉 increases with energy across the entire incident energy

range.

For the first moment, both baselines exactly reproduce the data. This is to be expected for

the gamma baseline, because the first and second moments are equivalent to the parameters

used to define the gamma distribution. It is promising that the sampled baseline reproduces

the first moment. This need not be the case for several reasons: the sampling method

does not take into account particle species, and the sampling method assumes that within a

centrality bin the multiplicity and the pt spectra are uncorrelated.

7.1.3 μ2 (σ2
〈pt〉, κ2)

Figure 7.2 shows the second moment of the 〈pt〉 spectra (the variance) for the 0-5% centrality

bin as a function of energy. As is Figure 7.1 the sampled baseline and gamma baseline are

also plotted. To first order the variance decreases monotonically with energy. The second

moment (and all higher moments as well) are non-trivially sensitive to pt cuts, η cuts,

centrality cuts, and detector efficiencies, so it is unclear if the kink near 39 and 62.4 GeV is
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Figure 7.1: The first moment, μ1, for the 0-5% centrality bin plotted versus energy. Two
baselines are also plotted: the gamma baseline, and the statistically sampled baseline. The
lines are error bands which represent statistical error.
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Figure 7.2: The first moment, μ2, for the 0-5% centrality bin plotted versus energy. Two
baselines are also plotted: the gamma baseline, and the statistically sampled baseline. The
lines are error bands which represent statistical error.

physical, or an experimental artifact. We have extensively carried out quality assurance for

the data, but it is possible that some unknown effects still remain.

As with the first moment we see, as anticipated, that the gamma baseline reproduces the

data. Unlike with the first moment, the sampled baseline is smaller than the data. This

observation is equivalent to the statement that the 〈pt〉 spectra is narrower for the sampled

baseline than for the data. This has been observed previously when comparing data with

mixed events [36]. This indicates that the data are not purely statistical, and that there

are correlations in the data. The difference between the data and the statistically sampled
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baseline is in agreement with the values of
〈
Δpt,i, Δpt,j

〉
presented in Chapter 5. This is no

surprise because they are equivalent approaches for measuring σ2
〈pt〉,dynamic as discussed in

Section 4.3.

The increase in σ2
〈pt〉,dynamic could indicate many different physical phenomena: increase in

jets (and jet fluctuations), increase in resonance decays (and increase in resonance fluctua-

tions), or an increase in temperature fluctuations. The decrease in μ2 with energy is largely

due to the increase in multiplicity with energy (See Figure 7.3). The increase in multiplicity

decreases the statistical fluctuations. The statistical fluctuations are also related to the av-

erage variance of the underlying pt distribution, σ2
pt (see Fig 7.4). The magnitude of

〈
σ2

pt

〉
is dominated by the temperature of the distribution, but is modified by other effects. The

decrease with energy up to
√

sNN = 19.6 GeV is due to the change in particle ratios, just

as was observed with 〈〈pt〉〉 (Section 5.1). Jets, flow, high-pt particle suppression and other

effects may all modify
〈
σ2

pt

〉
.

7.1.4 μ3 (κ3)

Figure 7.5 shows the third moment of the 〈pt〉 spectra for the 0-5% centrality bin as a

function of energy for the data and the two baselines. As with the second moment, we see

that the third moment decreases with energy, except for some non-monotonic behavior in

the region from 27 to 62.4 GeV.

This moment shows interesting deviation between the data and the baselines. Unlike with

the previous moments, here the gamma baseline does not exactly reproduce the data. The

trend of the data are reproduced but the gamma baseline underestimates the third moment

for all energies except 7.7 GeV, and does not reproduce the ‘kink’, which may be indicative
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Figure 7.3: The average multiplicity 〈N〉 as a function of energy for the 0-5% centrality bin.
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Figure 7.4: The average variance of the underlying pt distribution,
〈
σ2

pt

〉
, as a function of

energy for the 0-5% centrality bin.
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Figure 7.5: The third moment, μ3, for the 0-5% centrality bin plotted versus energy. Two
baselines are also plotted: the gamma baseline, and the statistical sampled baseline. Solid
lines are drawn to guide the eye. Error bands represent statistical error.
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of interesting physics.

The sampled baseline also does not reproduce the data. At high energies (62.4 GeV and 200

GeV) the sampled baseline is lower than the data, while at 7.7 GeV the sampled baseline

is in agreement with the data within errors. This, like in the second moment, indicates

a disappearance of correlations in the data as the energy decreases. It is interesting that

the sampled baseline does not reproduce the ‘kink’ in the region from 27 to 62.4 GeV. The

hypothesis with the sampled baseline was that experimental effects which change the 〈pt〉

distribution do so by their effect on the track pt distribution. So, by statistically sampling the

experimental track pt distribution, we should create a statistical baseline which perseveres

the purely analysis and experimentally dependent effects. The disagreement between the

data and the sampled baseline means either the sampled baseline hypothesis was incorrect

and that the sampled baseline does not preserve the experimental and analysis effects (or

those effects those effects become too dilute), or we are seeing the first tantalizing indications

of interesting incident energy dependent physics.

The difference between the data and the sampled baseline is the dynamic third moment,

μ3,dynamic, and is a shortcut to the three particle relative transverse-momentum correlator〈
Δpt,i, Δpt,j , Δpt,k

〉
, which would be defined analogously to

〈
Δpt,i, Δpt,j

〉
. The absence of

dynamic fluctuations of the 〈pt〉 distribution at 7.7 and 11 GeV is an interesting physics

observation which has already been made several times. This could indicate a change to a

first order phase transition, or something more mundane. There could be physical effects

which may decrease the correlation of the system, increasing thermalization and washing out

dynamic correlations, the systems at 7.7 and 11 GeV may not be forming a QGP, or there

may simply be too few high pt particles to accurately sample the temperature and 〈pt〉 of
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the system.

7.1.5 μ4

Figure 7.6 shows the fourth moment of the 〈pt〉 spectra for the 0-5% centrality bin as a

function of energy for the data and the two baselines. The behavior of the fourth moment

of the data is similar to that of the second and third moments, it decreases with energy

except for some small non-monotonic behavior near 62.4 GeV. The similar behavior of the

different higher moments is not unexpected, because they are all powers of the symmetry or

asymmetry of the distribution.

The data and baselines look very similar to the second moment, μ2. The gamma baseline

reproduces the data very well. The difference between the data and the sampled baseline is

the dynamic fourth moment, μ4,dynamic. As has been previously observed serval times, there

clearly are dynamic fluctuations of 〈pt〉 but they decrease as the energy decreases, becoming

consistent with zero at 7.7 GeV.

7.1.6 κ4

The first three moments are equivalent to the first three cumulants, but the fourth moment

and fourth cumulant differ (Eq. 4.14). Figure 7.7 shows the fourth cumlant, κ4, for the

0-5% centrality bin as a function of energy for the data and the two baselines. The fourth

cumulant is related to the moments by, κ4 = μ4 − 3μ2
2. The two terms μ4 and μ2

2 are close

in magnitude, so the difference is a small number with a large uncertainty. Not much can be

said about the fourth moment except that it does not invalidate the conclusion that dynamic
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Figure 7.6: The fourth moment, μ4, for the 0-5% centrality bin plotted versus energy. Two
baselines are also plotted: the gamma baseline, and the statistical sampled baseline. The
lines are error bands which represent statistical error.
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Figure 7.7: The fourth cumulant, κ4, for the 0-5% centrality bin plotted versus energy. Two
baselines are also plotted: the gamma baseline, and the statistical sampled baseline. Solid
lines are drawn to guide the eye. Error bands represent statistical error.

correlations are disappearing from the data at 11.5 and 7.7 GeV.

7.1.7 Comparisons of Moments with UrQMD

The full higher moments analysis was also performed on results generated by UrQMD (Sec-

tion 3.8). All of the UrQMD results presented here were calculated with simulated pt de-

pendent inefficiency. The effect of this efficiency simulation on the higher moments analysis

is addressed in Section 8.3. The UrQMD analysis was done with the same analysis and

geometric cuts as the data. Only the first two moments are presented here because all mo-
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ments greater than the second moment exhibit the same trend and behavior as the second

moment.

Figure 7.8 shows the first moment of the 〈pt〉 spectra as a function of energy for the 0-5%

centrality bin for the data and UrQMD. The behavior of the first moment for UrQMD was

already shown in Figure 6.5. The magnitude and trend of the data are only approximately

reproduced by UrQMD. The trend of decreasing with energy for lower energies, then increas-

ing with energy at higher energies is present, but the inflection energy is significantly higher

(39 GeV as opposed to 19.6 GeV). As a result, the value of the first moment is significantly

lower for UrQMD at high energies than in the data.

Figure 7.9 shows the second moment of the 〈pt〉 spectra as a function of energy for the 0-5%

centrality bin for the data and UrQMD. As with the first moment, UrQMD only generally

reproduces the trend and magnitude of the data. UrQMD exhibits a much stronger energy

dependence than the data, over estimating the second moment at 7.7 and 11.5 GeV, and

under estimating it for all energies 19.6 GeV and above.

7.2 Cumulant Ratios

As was discussed in 4.6.6, ratios of the cumulants have been proposed as sensitive probes of

the correlation length. Taking a ratio should cause efficiencies to cancel. Several ratios have

been proposed, and here we will examine two: Sσ, Kσ2 and compare them with the gamma

baseline and the statistically sampled baseline.
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Figure 7.8: The first moment, μ1, for three centrality bins plotted versus energy. In addition
to the experimental result, the result from UrQMD with pt dependent efficiency is plotted.
Statistical errors are plotted as error bands, but are smaller than the point markers.
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Figure 7.9: The second moment, μ2, for three centrality bins plotted versus energy. In
addition to the experimental result, the result from UrQMD with pt dependent efficiency is
plotted. Statistical errors are plotted as error bands, but are smaller than the point markers.
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7.2.1 Sσ

Figure 7.10 shows Sσ (equivalent to
κ3
κ2

) for the 0-5% centrality as a function of energy for

data, the gamma baseline, and the statistically sampled baseline.

A number of things are apparent: neither baseline reproduces the data for all energies. Both

baselines reproduce the data at 7.7 GeV, and the sampled baseline also reproduces the data

at 11.5 GeV, but for all other energies the baselines underestimate the data. Also notable is

the pronounced ‘kink’ in the data centered around 27 to 39 GeV. This kink was previously

observed in the moments of the distribution. Neither baseline shows this behavior, and it

may be an indication of interesting physics.

7.2.2 Kσ2

Figure 7.11 shows Kσ2 for the 0-5% (equivalent to
κ4
κ2

) centrality as a function of energy

for data, the gamma baseline, and the statistically sampled baseline. The sensitivity of

this measurement to statistics is apparent. Event the sampled baseline, which was done

with 5 million events per energy (substantially more that the data, see Table 3.4), exhibits

statistical fluctuations. The behavior of this ratio is dominated by the fourth cumulant. As

with the fourth cumulant, this does not invalidate the conclusion that correlations disappear

at 11.5 and 7.7 GeV, but it offers little additional insight.

The trend of the data appears erratic, and more statistics and more detailed analysis is

necessary before any strong conclusions can be drawn.
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Figure 7.10: The cumulant product Sσ for two centrality bins plotted versus energy. Two
baselines are plotted along with the data. Solid lines are drawn to guide the eye. Error
bands represent statistical error.
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Figure 7.11: The cumulant product Kσ2 for two centrality bins plotted versus energy. Two
baselines are plotted along with the data. Solid lines are drawn to guide the eye. Error
bands represent statistical error.
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Chapter 8

Checks of the Higher Moments

Analysis

This is the first time a systematic analysis of the moments of the 〈pt〉 spectra has been

attempted. A detailed study of the effects of the analysis cuts and detector efficiency on the

moments and cumulant ratios was undertaken. In Section 8.1 the effect of both the width

and symmetry of the η cut is studied, in Section 8.2 the effect of the upper pt cut is studied,

and in Section 8.3 the effect of pt dependent efficiency is studied. Additionally, in Section 8.4

the method used for calculating the errors of the moments and cumulant ratios is presented,

and the systematic error of the higher moments analyses is estimated.

8.1 η Cut Dependence

The effect of the η cut on the analysis was studied by investigating two different sets of

cases: one set of cases where η cut was kept centered at η = 0 but it’s width was varied, and

another set where the width of the η cut was kept constant but where it was centered in the

detector was varied. These are the same cases investigated while checking the ηdependence

of
〈
Δpt,i, Δpt,j

〉
.
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Figures 8.1 and 8.2 shows the first moment of the 〈pt〉 spectra for four energies and three

centralities as calculated using two different symmetric η cuts. Figures 8.3 and 8.4 is the

same Figure for the second moment.

Both the first and second moments are sensitive to the width of the η cut. The sensitivity of

the second moment to the width of the η cut is largely independent of the energy, while for the

first moment different energies differ in sensitivity with 7.7 GeV being notably sensitive.

As the η cut gets narrower, both the first and second moments increase. The first moments

sensitivity to the width of the η cut implies that the transverse momentum deposited in the

detector is larger at mid-rapidity than away from mid-rapidity.

The increase in the second moment with the narrowing of the η cut seems contrary to the

increase in the first moment. The decrease in the first moment implies that there are more

low pt tracks at large rapidity than small rapidity, and as these tracks are removed by the

η cut, the 〈pt〉 distribution would be expected to become narrower in addition to the mean

shifting to higher pt. Instead the second moment increases, which is a consequence of the

poorer sampling of the underlying track pt distribution because less tracks are within the

acceptance.

Figures 8.5, 8.6, 8.7, and 8.8 show the first and second moments for two energies and the

first three centrality bins using three η cuts of differing symmetry. All three η cuts have the

same width (η = 1), only where they are centered in the detector is shifted.

There is no consistent trend for either the first or second moment as the symmetry of the η cut

is varied. While the STAR detector has a symmetric acceptance about η = 0, experimental

difficulties do not arise symmetrically. The variations between these asymmetric η cuts arises
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Figure 8.1: The first moment, μ1, for three centrality bins for 39 GeV plotted with symmetric
η cuts of various widths. The lines are to guide the eye. There are error bars which represent
statistical error, but are smaller than the point markers.
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Figure 8.2: The first moment, μ1, for three centrality bins for 200 GeV plotted with sym-
metric η cuts of various widths. The lines are to guide the eye. There are error bars which
represent statistical error, but are smaller than the point markers.

129



Figure 8.3: The second moment, μ2, for three centrality bins for 39 GeV plotted with
symmetric η cuts of various widths. The lines are to guide the eye. There are error bars
which represent statistical error, but are smaller than the point markers.
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Figure 8.4: The second moment, μ2, for three centrality bins for 200 GeV plotted with
symmetric η cuts of various widths. The lines are to guide the eye. There are error bars
which represent statistical error, but are smaller than the point markers.
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Figure 8.5: The first moment, μ1, for three centrality bins for 7.7 GeV plotted with three
asymmetric η cuts of width 1. The lines are to guide the eye. There are error bars which
represent statistical error, but are smaller than the point markers.

from detector asymmetries. If we were performing an analysis of η correlations this would be

a concern. Since we are interested in the bulk properties of the 〈pt〉 distribution we simply

selected a wide symmetric η acceptance. Also note that the changes in the first and second

moments are small.
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Figure 8.6: The first moment, μ1, for three centrality bins 200 GeV plotted with three
asymmetric η cuts of width 1. The lines are to guide the eye. There are error bars which
represent statistical error, but are smaller than the point markers.
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Figure 8.7: The second moment, μ2, for three centrality bins for 7.7 GeV plotted with three
asymmetric η cuts of width 1. The lines are to guide the eye. There are error bars which
represent statistical error, but are smaller than the point markers.
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Figure 8.8: The second moment, μ2, for three centrality bins and for 200 GeV plotted with
three asymmetric η cuts of width 1. The lines are to guide the eye. There are error bars
which represent statistical error, but are smaller than the point markers.
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8.2 pt Cut Dependence

Figures 8.9, 8.10, 8.11, and 8.12 show the first and second moment of the 〈pt〉 distributions

for two energies and three centralities done with five different pt analysis cuts. All five

analysis cuts have the same lower pt cut (0.15 GeV/c), and their upper pt cut is varied from

0.5 to 3.0 GeV/c.

Both the first and second moments decrease as the pt cut is made narrower. This behavior

is anticipated because the underlying pt distribution is being truncated, which will truncate

the 〈pt〉 distribution.

The pt cut 0.15 GeV/c < pt < 2.0 GeV/c was selected for the results shown in this disser-

tation so that they could be compared with previous analysis.

8.3 Detector Efficiency Dependence

The effect of pt dependent efficiency was studied with UrQMD (Section 3.8). The higher

moments analysis was run twice, once using the full set of UrQMD simulated events, and

again where the tracks in each event were used or not used based on pt efficiency as deter-

mined by embedding. The pt dependent efficiency was done independently for individual

particle species.

The behavior of the first moment has already been shown in Figure 6.5, and it was observed

to increase with inefficiency because the efficiency is lower for low pt tracks. The second

moment is not shown in this dissertation, but it is also observed to increase with inefficiency.

This is because there are fewer tracks per event.
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Figure 8.9: The first moment, μ1, for three centrality bins for 19.6 GeV plotted with pt cuts
which vary in their upper bound. The lines are to guide the eye. There are error bars which
represent statistical error, but are smaller than the point markers.
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Figure 8.10: The first moment, μ1, for three centrality bins for 39 GeV plotted with pt cuts
which vary in their upper bound. The lines are to guide the eye. There are error bars which
represent statistical error, but are smaller than the point markers.
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Figure 8.11: The second moment, μ2, for three centrality bins for 19.6 GeV plotted with pt
cuts which vary in their upper bound. The lines are to guide the eye. There are error bars
which represent statistical error, but are smaller than the point markers.
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Figure 8.12: The second moment, μ2, for three centrality bins for 39 GeV plotted with pt
cuts which vary in their upper bound. The lines are to guide the eye. There are error bars
which represent statistical error, but are smaller than the point markers.
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UrQMD

Figure 8.13: The cumulant ratio Sσ for UrQMD with and without pt dependent efficiency
simulation. The error bands represent statistical error.

Figure 8.13 shows the cumulant ration Sσ as a function of energy for UrQMD with and

without the simulated pt efficiency. Two things can be noted: there is statistical fluctuation

and this simulation would be improved with additional statistics, and the result with simu-

lated pt dependent efficiency is higher for energies up to 39 GeV. Above 39 GeV the results

with and without the simulated efficiency are within statistical agreement.

Figure 8.14 shows the cumulant ratio Kσ2 as a function of energy for UrQMD with and

without the simulated pt efficiency. Due to statistical error, not much can be said. The

result seems suggestive that pt inefficiency increases Kσ2 at the lower energies, but the two
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UrQMD

Figure 8.14: The cumulant ratio Kσ2 for UrQMD with and without pt dependent efficiency
simulation. The error bands represent statistical error.

results are within statistical agreement at 7.7, 19.6, and 27 GeV.

8.4 Error Calculation

The statistical errors of higher moments have been derived using the Delta theorem in Ref.

[52]. The statistical error of a moment are related non-trivially to higher moments of the

distribution. Because the derivation of the statistical errors is not related to the underlying

physics, but it rather an exercise in mathematics, the derivation will not be reproduced here.

Interested readers are referred to Ref. [52].
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Energy μ1 μ2 μ3 μ4
7.7 GeV 0.751% 4.426% 11.107% 8.522%
11.5 GeV 0.504% 4.114% 5.88% 7.578%
19.6 GeV 0.551% 3.655% 10.336% 7.574%
27 GeV 0.135% 1.97% 2.684% 3.914%
39 GeV 0.493% 4.777% 8.899% 9.656%

62.4 GeV 0.265% 0.386% 0.506% 1.061%
200 GeV 0.450% 3.222% 6.570% 6.384%

Table 8.1: The systematic error for the 0-5% centrality bin of the first four moments as
calculated from the variation noted when changing the symmetry of the η cut.

The statistical error of the higher moments has been estimated from the investigation of

the symmetry of the η cut. The width of the η cut and the upper bound of the pt cut

were not used in this estimation because the variation of the moments with these two cuts

is systematic and understood. The systematic error in the 0-5% centrality bin of the first

moment is ∼ 0.5%, for the second moment is ∼ 3%, for the third moment is ∼ 7%, and for

the fourth moment is ∼ 7%. The estimated systematic errors of the first four moments for

each energy is given in Table 8.1.
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Chapter 9

Conclusion

Two analyses have been presented in this dissertation, the study of the two-particle transverse

momentum correlator
〈
Δpt,i, Δpt,j

〉
, and the study of the higher moments of the 〈pt〉 spectra.

Both of these studies, but in particular the study of the moments, were intended to be

searches for the QCD critical point. The study of
〈
Δpt,i, Δpt,j

〉
only has utility as a critical

point observable due to it’s relationship with the second moment of the 〈pt〉 spectra, but it

has additional use as a measure of system equilibration.

9.1 Summary of Correlations Analysis

As mentioned above,
〈
Δpt,i, Δpt,j

〉
can be used as a critical point observable because of

it’s relationship to the second moment of the 〈pt〉 spectra (see App. ). Additionally,〈
Δpt,i, Δpt,j

〉
can be used to explore the thermal behavior of the system and look for be-

havior such as equilibration and “thermalization”.

The first part of the
〈
Δpt,i, Δpt,j

〉
analysis was the determination of 〈〈pt〉〉. 〈〈pt〉〉 is given as

a function of energy for all centrality bins in Figure 5.2. In central and mid-peripheral bins

that for energies up to 19.6 GeV 〈〈pt〉〉 decreases with energy, and above 19.6 GeV 〈〈pt〉〉

increases with energy for all centrality bins. This behavior is a consequence of changing
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particle ratios, specifically the pion-proton ratio. For thermal distributions of the same

temperature, protons will have larger a 〈〈pt〉〉 than pions because they are more massive.

This behavior is qualitatively reproduced by UrQMD.

The unscaled correlator
〈
Δpt,i, Δpt,j

〉
is shown in Figure 5.3 as a function of energy for

all centrality bins.
〈
Δpt,i, Δpt,j

〉
increases with both energy and as collisions become more

peripheral. The variation with centrality is to variation in 〈〈pt〉〉 and the changing number

of particles in each event. Peripheral events, corresponding to lower multiplicties, have fewer

tracks. As collisions become more central, and the number of tracks increases like N , the

number of pairs increases like N2. This results in a “dilution” of the correlations because〈
Δpt,i, Δpt,j

〉
is an average over all pairs of tracks.

In addition to
〈
Δpt,i, Δpt,j

〉
, also presented were several scaled variants. The first scaled

correlation presented was
√〈

Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉 which is shown in Figure 5.4 as a function

of energy for all centrality bins. The advantage of scaling with 〈〈pt〉〉 is that the result

is unitless and efficiency independent. The behavior of
√〈

Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉 is similar

to that of
〈
Δpt,i, Δpt,j

〉
, increasing with both energy and in peripheral collisions, but the

energy dependence is weakened.

Another scaling presented was 〈N〉 〈Δpt,i, Δpt,j
〉
. Figure 5.5 is 〈N〉 〈Δpt,i, Δpt,j

〉
as a func-

tion of energy for all centrality bins. The motivation for examining 〈N〉 〈Δpt,i, Δpt,j
〉

is to

check if the centrality dependence of
〈
Δpt,i, Δpt,j

〉
is due only to the dilution effect discussed

above. 〈N〉 〈Δpt,i, Δpt,j
〉

increases with collision energy.

The final scaling presented was
√
〈N〉 〈Δpt,i, Δpt,j

〉
/ 〈〈pt〉〉.

√
〈N〉 〈Δpt,i, Δpt,j

〉
/ 〈〈pt〉〉 is

shown in two Figures: Figure 5.7 all seven energies are plotted as functions of Npart and

in Figure 5.8
√
〈N〉 〈Δpt,i, Δpt,j

〉
/ 〈〈pt〉〉 is given as a function of energy for each centrality
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bin. Figure 5.7 shows that this scaling has largely removed the centrality dependence of〈
Δpt,i, Δpt,j

〉
. This makes sense because we have addressed both the dilution effect and

the variation of 〈〈pt〉〉 with centrality. The remaining centrality dependence is indicative of

new physics. It is possible that we are observing the threshold where the produced systems

are too small and short lived to reach thermal equilibration and produce QGP. Another

interesting property is observed in 5.8,
√

〈N〉 〈Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉 is observed to increase

smoothly and continuously with collision energy. This is the dependence of
〈
Δpt,i, Δpt,j

〉
,

or more precisely
√
〈N〉 〈Δpt,i, Δpt,j

〉
/ 〈〈pt〉〉, on the temperature of the system.

Other experimental analyses have used
√〈

Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉 [36, 51], or equivalent observ-

ables [49], and comparisons with those results is shown in Figure 5.9. The results presented

in this dissertation are in excellent agreement with previous results from the STAR collab-

oration [36], and the agreement with the results from CERES [49] is reasonable, and the

disagreements are believed to be understood (see Section 5.6). The addition of a prelim-

inary point from ALICE [51] suggests that
√〈

Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉 may plateau at higher

energies.

9.2 Summary of Moments Analysis

The higher moments analysis of the 〈pt〉 spectra is a wholly original study, and the results

are of interest because they are strongly related to the correlation length of the system and

are therefore a excellent candidate as a critical point observable. In addition to the first four

moments and cumulants, the two cumulant ratios Sσ and Kσ2 were presented. The 〈pt〉

spectra, with the gamma distributions used for the baselines are in Figure 5.1.
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The first moment of the 〈pt〉 spectra, μ1, is shown in Figure 7.1 as a function of energy for the

0-5% centrality bin for the data and the two baselines. The first moment is identical to 〈〈pt〉〉

presented in the two-particle correlation analysis and the results are in exact agreement.

The second moment, μ2, is given in Figure 7.2 as a function of energy for the 0-5% centrality

bin for the data and the two baselines. The gamma baseline is fit to the first and second

moments of the data, so it’s agreement with the data are expected. The statistical baseline is

lower for the data for all energies except 7.7 GeV. This means that the statistically sampled

distribution is narrower than the data, and that there are correlations in the data which

are not reproduced in the statistical baseline. The 〈pt〉 spectra for 200 GeV in the 0-5%

centrality bin for both data and the statistically sampled baseline is shown in Figure 4.1. It

is notable that the deviation of the sampled baseline from the data are largest at the highest

energies, and that the deviation becomes smaller as the energy decreases until at 7.7 GeV the

data and sampled baseline are indistinguishable. This indicates that the correlations in the

data are decreasing with energy, which is the same conclusion measured by the two-particle

correlator.

Figure 7.5 is the third moment, μ3, as a function of energy for the 0-5% bin for the data

and the two baselines. This is the only indication that the data are note exactly gamma

distributions. We see that the third moment decreases with collision energy, except for an

increase in the region of 39 to 62.4 GeV. Both baselines are lower than the data above

11.5 GeV, with the exception that the gamma baseline is within errors at 200 GeV. Neither

baseline reproduces the ‘kink’ in the 39 to 62.4 GeV region. The deviation between the data

and the statistical baseline could again be indicative of correlations in the data which are

not present in the statistical baseline.
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The fourth moment, μ4, as a function of energy for the 0-5% centrality bin for the data and

two baselines is Figure 7.6. The fourth moment looks very similar to the second moment, as

could be anticipated because they are both measures of the symmetry of the distributions.

We see that the gamma baseline reproduces the data very well, and that the statistical

baseline is lower than the data for all energies except 7.7 GeV indicating that there are

non-statistical correlations in the data.

The fourth cumulant, κ4, as a function of energy for the 0-5% centrality bin for the data and

two baselines is Figure 7.7. The fourth cumulant a difference between two values, resulting a

small number with very large error bars. It is clear that more statistics are needed in order

to draw any conclusions from the fourth cumulant. While the fourth cumulant is of little

use, it does not invalidate the conclusion that dynamic correlations disappear from the data

at 11.5 and 7.7 GeV.

The cumulant ratio Sσ is given as a function of energy for the 0-5% centrality bin for the

data and the two baselines in Figure 7.10. We see exciting behavior similar to that which was

observed in the third moment: Sσ decreases with energy except for a pronounced increase

at 39 to 62.4 GeV, for all energies except 7.7 GeV the baselines are lower than the data (the

statistical baseline also agrees at 11.5 GeV), and neither baseline reproduces the kink at 39

to 62.4 GeV. This is one of the most exciting results, but additional analysis will be required

to insure that this result is physical and not just an artifact.

The other cumulant ratio presented was Kσ2, given in Figure 7.11 as a function of energy for

the 0-5% centrality bin for the data and the two baselines. The need for additional statistics

is apparent, and it’s behavior is driven by the behavior of κ4.
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9.3 Looking Forward

While there are many results presented in this dissertation, there are ultimately two results

of note: first we observe that dynamic correlations of 〈pt〉 decrease below 19.6 GeV becoming

negligible at 7.7 GeV, and second no dramatic non-monotonic behavior is observed in any

pt fluctuations as collision energy or centrality is varied.

The decrease of dynamic correlations with decreasing energy could be an indication of the

onset of the deconfined phase, change in the type of phase transition, or it could be caused

by many less novel physical effects: changing chemistry, flow, particle decays, charge corre-

lations, jets, or other effects. The Hanbury Brown and Twiss (HBT) effect is one that can

already be discounted by the short range correlations check (cutting on pairs by qinv. See

Section 6.5). The effect of changing chemistry could be investigated by performing the anal-

yses independently for identified particle species. Performing these analyses for identified

particles presents additional challenges. The effect of flow can be studied using momentum

correlations in Δθ for various angles with respect to the event plane. Identified particle

decays, such a as the φ meson to two kaons, can be excluded by using a similar method used

in the short range correlation analysis. Pairs of particles of the correct species and with qinv

corresponding to the mass of the mother particle can be cut out and mixed events can be

used to correct the induced auto-correlation.

The absence of dramatic non-monotonic behavior is an important null result which suggests

that we have not observed the critical point. A more quantitative statement will require

both more sophisticated analysis and more detailed theoretical work. The dependence of pt

fluctuations on the correlation length is a function of chemistry, experimental pt dependent
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efficiencies, and analysis cuts. There may be many competing physical effects which are all

manifest in 〈pt〉 fluctuations and cannot be distinguished without other analyses. The many

uncertainties are why most critical point searches have approached the problem empirically.

The results presented in this dissertation will have to be taken hand-in-hand with other

forthcoming analyses in order to make truly conclusive statements about the critical point

of QCD.

9.4 In Summary

The two-particle transverse momentum correlator
〈
Δpt,i, Δpt,j

〉
and the scaled variant√〈

Δpt,i, Δpt,j
〉
/ 〈〈pt〉〉 both suggest that there are non-statistical correlations in the data

which increase with energy and are small, if not in agreement with zero, at 7.7 GeV. A

similar result is also seen in the analysis of the higher moments of the 〈pt〉 spectra where

moments of the data are larger than those of the statistically sampled baseline at the higher

energies. The deviation between the data and the sampled baseline is energy dependent and

disappears at 7.7 GeV.

Both analyses,
〈
Δpt,i, Δpt,j

〉
and moments of the 〈pt〉 spectra, show no indications of non-

monotonic behavior with changing collision energy with one exception. The examination of

the odd higher moments of the 〈pt〉 spectra shows anomalous behavior and increases in the

higher moments in the region around 39 GeV to 62.4 GeV.
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APPENDIX

Derivation of〈
Δpt,i, Δpt,j

〉
= σ2

〈pt〉 −
〈

σ2
pt

N

〉

Here we will break down the two-particle transverse momentum (pt) correlation observable,〈
Δpt,i, Δpt,j

〉
, which has been used in several STAR analyses [36, 39]. We will demonstrate

that
〈
Δpt,i, Δpt,j

〉
can be written as a sum of two parts, one corresponding to the average

covariance of the average pt spectrum, and another corresponding to the second moment of

the 〈pt〉 spectra and the average number of tracks used in the calculation.

A.1 Additional Notation

The correlation observable
〈
Δpt,i, Δpt,j

〉
is given in Section 4.7.1. Before deriving our result

we will need to define a few more terms. First, without too much concern as to the physical

significance, we define a transverse momentum sample self-covariance for an event k,

σ2
k,k =

∑Nk
i=1

∑Nk
j=1

(
pt,i − 〈pt〉k

) (
pt,j − 〈pt〉k

)
N 2

k

. (A.1)

The self-covariance σ2
k,k is always zero. The only assumption necessary to demonstrate this
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is that the underlying distribution is bound. In the experimental case, the underlying pt

distributions are bound to a range
[
pt,min, pt,max

]
by analysis cuts, but even in the ideal

case all that is needed is that the the underlying distribution is positive and integrable.

First we write Eq. A.1 expanding the 〈pt〉 terms,

σ2
k,k =

∑N
i=1

∑N
j=1

(
pt,i −

∑N
k pt,k
N

)(
pt,j −

∑N
k pt,k
N

)

N 2 . (A.2)

We can then multiply and regroup,

σ2
k,k =

∑N
i=1

∑N
j=1

⎡
⎣pt,ipt,j −

∑N
k pt,k
N

(
pt,i + pt,j

)
+

(∑N
k pt,k
N

)2
⎤
⎦

N 2 . (A.3)

Performing the summation on the last two terms in the numerator and simplifying,

σ2
k,k =

∑N
i=1

∑N
j=1 pt,ipt,j −

(∑N
k pt,k

)2

N 2 =

∑N
i=1

∑N
j=1 pt,ipt,j − N 2 〈pt〉2

N 2 . (A.4)

The final step is to note that
∑N

i=1
∑N

j=1 pt,ipt,j = N 〈pt〉
∑N

j=1 pt,i = N 2 〈pt〉2. This may

not be immediately obvious, but it arrises from the fact that a one dimensional distribution

cannot be correlated with itself, and the mean of the product of two uncorrolated distri-

butions is the product of the means. Stated mathematically, 〈xy〉 = 〈x〉 × 〈y〉. Therefore,

σ2
k,k = 0.

We also define an “idealized” variant of Ck (Eq. 4.18),
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{Ck} =

Nk∑
i=1

Nk∑
j=1,j �=i

(
pt,i − 〈pt〉k

) (
pt,j − 〈pt〉k

)
. (A.5)

{Ck} is “idealized” in that {Ck} = Ck if all events have the same 〈pt〉.

Note that Eq. A.1 and Eq. A.5 can be related by,

{Ck} = Nk (Nk − 1) σk,k −
Nk∑
i=1

(
pt,i − 〈pt〉k

)2
. (A.6)

Noting that σ2
k,k = 0 and that the sample variance σ2

pt,k
is defined σ2

x,k =

∑Nk
i=1(xi−〈x〉k)

Nk

we can simplify further to,

{Ck} = −Nkσ2
pt,k

. (A.7)

Lastly, before returning to
〈
Δpt,i, Δpt,j

〉
, we define for each event k,

Δ 〈pt〉k = 〈pt〉k − 〈〈pt〉〉 , (A.8)

which is the deviation of the mean transverse momentum with respect to the mean over

many events.
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A.2 Reconstruction of 〈Δpt,i, Δpt,j〉

With this notational machinery in place, we can begin by expanding Eq. 4.19 with Eq.

4.18,

〈
Δpt,i, Δpt,j

〉
=

1

Nevents

Nevents∑
k=1

∑Nk
i=1

∑Nk
j=1,j �=i

(
pt,i − 〈〈pt〉〉

) (
pt,j − 〈〈pt〉〉

)
Nk (Nk − 1)

. (A.9)

Using Eq. A.8, we can replace the 〈〈pt〉〉 terms,

〈
Δpt,i, Δpt,j

〉
=

1

Nevents

Nevents∑
k=1

⎡
⎣∑Nk

i=1
∑Nk

j=1,j �=i

{(
pt,i − 〈pt〉k + Δ 〈pt〉k

)
Nk (Nk − 1)

·
(
pt,j − 〈pt〉k + Δ 〈pt〉k

)}
...

]
.

(A.10)

Multiplying and regrouping gives us,

〈
Δpt,i, Δpt,j

〉
=

1

Nevents

Nevents∑
k=1

⎡
⎣∑Nk

i=1
∑Nk

j=1,j �=i

{(
pt,i − 〈pt〉k

) (
pt,j − 〈pt〉k

)
...

· · · +Δ 〈pt〉2k
Nk (Nk − 1)

· · ·

+Δ 〈pt〉k
(
pt,i + pt,j − 2 〈pt〉k

)}
...

]
.

(A.11)

This can be further simplified by noting three things: the first term of the interior of the
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double summation is the same as in Eq. A.5, the second term is unchanged by the summation

except for picking up a pre-factor of N (N − 1), and the last term will go to zero after the

summation.

We can then simplify Eq. A.11 to,

〈
Δpt,i, Δpt,j

〉
=

1

Nevents

Nevents∑
k=1

( {Ck}
Nk (Nk − 1)

+ (Δ 〈pt〉k)2
)

. (A.12)

Using Eq. A.7, we can replace
{Ck}

Nk(Nk−1)
,

〈
Δpt,i, Δpt,j

〉
=

1

Nevents

Nevents∑
k=1

(
−

σ2
pt,k

Nk − 1
+ (Δ 〈pt〉k)2

)
. (A.13)

Performing the average we get,

〈
Δpt,i, Δpt,j

〉
=
〈
(Δ 〈pt〉)2

〉
−
〈

σ2
pt

N − 1

〉
. (A.14)

Note that the first term,
〈
(Δ 〈pt〉)2

〉
, is κ

〈pt〉
2 , the second moment of the 〈pt〉 distribution, or

equivalently σ2
〈pt〉. We can also replace (N − 1) with N because they will be almost identical

for large values.

〈
Δpt,i, Δpt,j

〉
= σ2

〈pt〉 −
〈

σ2
pt
N

〉
. (A.15)

So the two particle correlation observable
〈
Δpt,i, Δpt,j

〉
is equivalent to the second moment

of the 〈pt〉 distribution minus the variance in the underlying event pt distributions scaled by
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the number of tracks.
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